精英家教网 > 高中数学 > 题目详情
已知函数f(x)=e-x+lnx(e是自然对数的底数),若实数x0是方程f(x)=0的解,且0<x1<x0<x2,则f(x1
 
f(x2)(填“>”,“≥”,“<”,“≤”).
分析:先对函数f(x)=e-x+lnx进行求导,判定在定义域上的单调性,根据单调性即可比较f(x1),f(x2)的大小关系.
解答:解:f’(x)=-e-x+
1
x
=
1-
x
ex
x

∵x>0,
x
ex
<1

∴f’(x)=
1-
x
ex
x
>0则函数f(x)在(0,+∞)上单调递增函数
∵0<x1<x0<x2
∴f(x1)<f(x2),
故填<.
点评:本题主要考查了函数与方程的综合运用,以及函数的单调性的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=e-x(cosx+sinx),将满足f′(x)=0的所有正数x从小到大排成数列{xn}.求证:数列{f(xn)}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区二模)已知函数f(x)=e|x|+|x|.若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•菏泽一模)已知函数f(x)=e|lnx|-|x-
1
x
|,则函数y=f(x+1)的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-xsinx(其中e=2.718…).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求f(x)在[-π,+∞)上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-x(x2+x+1).
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)求函数f(x)在[-1,1]上的最值.

查看答案和解析>>

同步练习册答案