精英家教网 > 高中数学 > 题目详情
椭圆有公共的焦点F1,F2,P是两曲线的一个交点,则=(   )
A.B.C.D.
C
因为两曲线有公共焦点,所以,设,
,,
,应选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知椭圆 .有相同的离心率,过点的直线,依次交于A,C,D,B四点(如图).当直线的上顶点时, 直线的倾斜角为.

(1)求椭圆的方程;
(2)求证:;
(3)若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知圆及定点,点Q是圆A上的动点,点G在BQ上,点P在QA上,且满足=0.
(I)求P点所在的曲线C的方程;
(II)过点B的直线与曲线C交于M、N两点,直线与y轴交于E点,若为定值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系xOy中,已知中心在原点,离心率为的椭圆E的一个焦点为圆C:x2+y2-4x+2=0的圆心.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设P是椭圆E上一点,过P作两条斜率之积为的直线l1,l2.当直线l1,l2都与圆C相切时,求P的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆方程为
(1)求圆心轨迹的参数方程和普通方程;
(2)点是(1)中曲线上的动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点,焦点在x轴上的椭圆离心率为,且经过点,过椭圆的左焦点作直线交椭圆于A、B两点,以OA、OB为邻边作平行四边形OAPB。 
(1)求椭圆E的方程
(2)现将椭圆E上的点的纵坐标保持不变,横坐标变为原来的一半,求所得曲线的焦点坐标和离心率
(3)是否存在直线,使得四边形OAPB为矩形?若存在,求出直线的方程。若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆中心在原点,焦点在x轴上,离心率e=,它与直线x+y+1=0交于P、Q两点,若OP⊥OQ,求椭圆方程。(O为原点)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如右图,设由抛物线与过它的焦点F的直线所围成封闭曲面图形的面积为(阴影部分)。
(1)设直线与抛物线交于两点,且,直线的斜率为,试用表示
(2)求的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是椭圆>0)的两个焦点,为椭圆上一点,且.若的面积为9,则="____________."

查看答案和解析>>

同步练习册答案