精英家教网 > 高中数学 > 题目详情
若对任意实数x,不等式x2-kx-k>0总成立,则实数k∈(  )
分析:利用不等式恒成立,转化为△<0,解不等式即可.
解答:解:要使不等式x2-kx-k>0总成立,则△=k2-4×(-k)=k2+4k<0,
解得-4<k<0,
即k∈(-4,0),
故选:C.
点评:本题主要考查一元二次不等式恒成立问题,将恒成立转化为△<0是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知p:方程x2+mx+1=0有两个不等的负实根;q:对任意实数x不等式4x2+4(m-2)x+1>0恒成立,若p或q为真,p且q为假,求实数m的取值范围..

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=alnx+
1
2
x2
,若对任意两个不等的正实数x1,x2都有
f(x1)-f(x2)
x1-x2
>0成立,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知p:方程x2+mx+1=0有两个不等的负实根;q:对任意实数x不等式4x2+4(m-2)x+1>0恒成立,若p或q为真,p且q为假,求实数m的取值范围..

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知p:方程x2+mx+1=0有两个不等的负实根;q:对任意实数x不等式4x2+4(m-2)x+1>0恒成立,若p或q为真,p且q为假,求实数m的取值范围..

查看答案和解析>>

科目:高中数学 来源:2010-2011学年甘肃省武威五中高三(上)期中数学试卷(文科)(解析版) 题型:解答题

已知p:方程x2+mx+1=0有两个不等的负实根;q:对任意实数x不等式4x2+4(m-2)x+1>0恒成立,若p或q为真,p且q为假,求实数m的取值范围..

查看答案和解析>>

同步练习册答案