精英家教网 > 高中数学 > 题目详情

【题目】在下列各函数中,最小值等于2的函数是(
A.y=x+
B.y=cosx+ (0<x<
C.y=
D.y=

【答案】D
【解析】解:对于选项A:当x<0时,A显然不满足条件.
选项B:y=cosx+ ≥2,当 cosx=1时取等号,但0<x< ,故cosx≠1,B 显然不满足条件.
对于C:不能保证 = ,故错;
对于D:.∵ex>0,∴ex+ ﹣2≥2 ﹣2=2,
故只有D 满足条件,
故选D.
【考点精析】掌握基本不等式和基本不等式在最值问题中的应用是解答本题的根本,需要知道基本不等式:,(当且仅当时取到等号);变形公式:;用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于实数x,记[x]表示不超过x的最大整数,如[3.14]=3,[﹣0.25]=﹣1.若存在实数t,使得[t]=1,[t2]=2,[t3]=3…[tt]=n同时成立,则正整数n的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)作出函数f(x)的大致图象;

(2)写出函数f(x)的单调区间;

(3)当时,由图象写出f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某程序框图如图所示,该程序运行后输出的值是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点

(1)求证:EF⊥CD;
(2)在平面PAD内求一点G,使GF⊥平面PCB,并证明你的结论;
(3)求DB与平面DEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分12分)

一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1234,现从盒子中随机抽取卡片.

(Ⅰ)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率;

(Ⅱ)若第一次随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数fx)的图象如图所示,曲线BCD为抛物线的一部分.

(Ⅰ)求fx)解析式;

(Ⅱ)若fx)=1,求x的值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数时都取得极值;

(1)求的值与函数的单调区间;

(2)若对,不等式恒成立,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若恒成立,试确定实数的取值范围;

(3)证明: .

查看答案和解析>>

同步练习册答案