精英家教网 > 高中数学 > 题目详情
6.如图,已知四棱锥S-ABCD中,SA⊥平面ABCD,∠ABC=∠BCD=90°,且SA=AB=BC=2CD=2,E是边SB的中点.
(1)求证:CE∥平面SAD;
(2)求二面角D-EC-B的余弦值大小.

分析 (1)取SA中点F,连结EF,FD,推导出四边形EFDC是平行四边形,由此能证明CE∥面SAD.
(2)在底面内过点A作直线AM∥BC,则AB⊥AM,以AB,AM,AS所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角D-EC-B的余弦值.

解答 证明:(1)取SA中点F,连结EF,FD,
∵E是边SB的中点,
∴EF∥AB,且EF=$\frac{1}{2}$AB,
又∵∠ABC=∠BCD=90°,
∴AB∥CD,
又∵AB=2CD,且EF=CD,
∴四边形EFDC是平行四边形,
∴FD∥EC,
又FD?平面SAD,CE?平面SAD,
∴CE∥面SAD.
解:(2)在底面内过点A作直线AM∥BC,则AB⊥AM,
又SA⊥平面ABCD,
以AB,AM,AS所在直线分别为x,y,z轴,建立空间直角坐标系,
则A(0,0,0),B(2,0,0),C(2,2,0),D(1,2,0),D(1,2,0),E(1,0,1),
则$\overrightarrow{BC}$=(0,2,0),$\overrightarrow{BE}$=(-1,0,1),$\overrightarrow{CD}$=(-1,0,),$\overrightarrow{CE}$=(-1,-2,1),
设面BCE的一个法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BC}=2y=0}\\{\overrightarrow{n}•\overrightarrow{BE}=-x+z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,0,1),
同理求得面DEC的一个法向量为$\overrightarrow{m}$=(0,1,2),
cos<$\overrightarrow{n},\overrightarrow{m}$>=$\frac{\overrightarrow{n}•\overrightarrow{m}}{|\overrightarrow{n}|•|\overrightarrow{m}|}$=$\frac{\sqrt{10}}{5}$,
由图可知二面角D-EC-B是钝二面角,
∴二面角D-EC-B的余弦值为-$\frac{\sqrt{10}}{5}$.

点评 本题考查线面平行的证明,考查二面角的余弦值求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=lgx,0<a<b,若p=f($\sqrt{ab}$),q=f($\frac{a+b}{2}$),r=$\frac{1}{2}$[f(a)+f(b)],则p,q,r的大小关系是(  )
A.p=r>qB.p=r<qC.q=r<pD.q-r>p

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数$y={log_a}({2{x^2}-3x+1})$,当x=3时,y<0则该函数的单调递减区间是(  )
A.$({-∞,\frac{3}{4}})$B.$({\frac{3}{4},+∞})$C.$({-∞,\frac{1}{2}})$D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某青年教师有一专项课题是进行“学生数学成绩与物理成绩的关系”的研究,他调查了某中学高二年级800名学生上学期期末考试的数学和物理成绩,把成绩按优秀和不优秀分类得到的结果是:数学和物理都优秀的有60人,数学成绩优秀但物理不优秀的有140人,物理成绩优秀但数学不优秀的有60人.
(1)能否在犯错概率不超过0.001的前提下认为该中学学生的数学成绩与物理成绩有关?
(2)将上述调查所得到的频率视为概率,从全体高二年级学生成绩中,有放回地随机抽取4名学生的成绩,记抽取的4份成绩中数学、物理两科成绩恰有一科优秀的份数为X,求X的分布列和期望E(X).
附:
P(K2≥k00.1000.0500.010
k06.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.直线$x-\sqrt{3}y-2=0$的倾斜角为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列判断错误的是(  )
A.命题“若am2≤bm2,则a≤b”是假命题
B.直线y=$\frac{1}{2}$x+b不能作为函数f(x)=$\frac{1}{{e}^{x}}$图象的切线
C.“若a=1,则直线x+y=0和直线x-ay=0互相垂直”的逆否命题为真命题
D.“f′(x0)=0”是“函数f(x)在x0处取得极值”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某校拟从高一年级、高二年级、高三年级学生中抽取一定比例的学生调查对“荆马”(荆门国际马拉松)的了解情况,则最合理的抽样方法是(  )
A.抽签法B.系统抽样法C.分层抽样法D.随机数法

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知直线ax+y-1=0与圆x2+y2-2x-8y+13=0交于A,B两点.若|AB|=2$\sqrt{3}$,则实数a的值是(  )
A.-$\frac{4}{3}$B.-$\frac{3}{4}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在直角坐标平面内,点A,B的坐标分别为(-1,0),(1,0),则满足tan∠PAB•tan∠PBA=m(m为非零常数)的点P的轨迹方程是(  )
A.${x^2}-\frac{y^2}{m}=1(y≠0)$B.${x^2}-\frac{y^2}{m}=1$C.${x^2}+\frac{y^2}{m}=1(y≠0)$D.${x^2}+\frac{y^2}{m}=1$

查看答案和解析>>

同步练习册答案