精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线的两个焦点为P为该双曲线上一点,满足P到坐标原点O的距离为d,且,则________.

【答案】49

【解析】

求得双曲线的bc,设P为右支上一点,|PF1|m|PF2|n,运用双曲线的定义,结合条件,由两点的距离公式,解不等式可得a的正整数解.

双曲线1b2c2a2+4

P为右支上一点,|PF1|m|PF2|n

由双曲线的定义可得mn2a

由题意可得4c2mn

又由三角形中线与边的关系可得:2 m2+2n2(2c)2+(2d)2

m2+n22c2+2d2

可得(mn2+2mn4a2+8c22c2+2d2

d2∈(2581),

255a2+1281

a为正整数,可得a249

故答案为:49

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆,设是椭圆上任一点,从原点向圆作两条切线,切点分别为

(1)若直线互相垂直,且点在第一象限内,求点的坐标;

(2)若直线的斜率都存在,并记为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,是等边三角形,是直角三角形,中点.

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】任意实数,定义,设函数,数列是公比大于0的等比数列,且,则____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象过点和点.

1)求函数的最大值与最小值;

2)将函数的图象向左平移个单位后,得到函数的图象;已知点,若函数的图象上存在点,使得,求函数图象的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线),过点)的直线交于两点.

1)若,求证:是定值(是坐标原点);

2)若是确定的常数),求证:直线过定点,并求出此定点坐标;

3)若的斜率为1,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】个正数依次围成一个圆圈,其中是公差为的等差数列,而是公比为的等比数列.

1)若,求数列的所有项的和

2)若,求的最大值;

3)当时是否存在正整数,满足?若存在,求出值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,数列满足:,,记

(1)若,求数列的通项公式;

(2)证明:数列是等差数列;

(3)定义,证明:若存在,使得为整数,且有两个整数零点,则必有无穷多个有两个整数零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】日照一中为了落实阳光运动一小时活动,计划在一块直角三角形ABC的空地上修建一个占地面积为S的矩形AMPN健身场地.如图,点MAC上,点NAB上,且P点在斜边BC上,已知∠ACB=60°|AC|=30米,|AM|=x米,x[10,20].

(1)试用x表示S,并求S的取值范围;

(2)若在矩形AMPN以外(阴影部分)铺上草坪.已知:矩形AMPN健身场地每平方米的造价为,草坪的每平方米的造价为(k为正常数).设总造价T关于S的函数为T=f(S),试问:如何选取|AM|的长,才能使总造价T最低.

查看答案和解析>>

同步练习册答案