用反证法证明“a,b,c中至少有一个大于0”,下列假设正确的是( )
A.假设a,b,c都小于0 |
B.假设a,b,c都大于0 |
C.假设a,b,c中都不大于0 |
D.假设a,b,c中至多有一个大于0 |
科目:高中数学 来源: 题型:单选题
用反证法证明命题“三角形的内角至多有一个钝角”时,假设的内容应为( )
A.假设至少有一个钝角 | B.假设至少有两个钝角 |
C.假设没有一个钝角 | D.假设没有一个钝角或至少有两个钝角 |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
由“正三角形的内切圆切于三边的中点”可类比猜想:正四面体的内切球切于四个面( )
A.各正三角形内一点 | B.各正三角形的某高线上的点 |
C.各正三角形的中心 | D.各正三角形外的某点 |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
下列推理是归纳推理的是( )
A.A,B为定点,动点P满足|PA|+|PB|=2a>|AB|,则P点的轨迹为椭圆 |
B.由a1=1,an=3n-1,求出S1,S2,S3,猜想出数列的前n项和Sn的表达式 |
C.由圆x2+y2=r2的面积πr2,猜想出椭圆+=1的面积S=πab |
D.以上均不正确 |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=( )
A.28 | B.76 | C.123 | D.199 |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
如果△A1B1C1的三个内角的余弦值分别等于△A2B2C2的三个内角的正弦值,那么( )
A.△A1B1C1和△A2B2C2都是锐角三角形 |
B.△A1B1C1和△A2B2C2都是钝角三角形 |
C.△A1B1C1是钝角三角形,△A2B2C2是锐角三角形 |
D.△A1B1C1是锐角三角形,△A2B2C2是钝角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
某个命题与正整数有关,如果当n=k(k∈N+)时,该命题成立,那么可
推得当n=k+1时命题也成立.现在已知当n=5时,该命题不成立,那么可推得( ).
A.当n=6时该命题不成立 |
B.当n=6时该命题成立 |
C.当n=4时该命题不成立 |
D.当n=4时该命题成立 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com