【题目】在某单位的职工食堂中,食堂每天以元/个的价格从面包店购进面包,然后以元/个的价格出售.如果当天卖不完,剩下的面包以元/个的价格全部卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了个面包,以(单位:个,)表示面包的需求量,(单位:元)表示利润.
(1)求关于的函数解析式;
(2)根据直方图估计利润不少于元的概率.
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足an = nkn(n∈N* , 0 < k < 1),下面说法正确的是( )
①当 时,数列{an}为递减数列;
②当 时,数列{an}不一定有最大项;
③当 时,数列{an}为递减数列;
④当 为正整数时,数列{an}必有两项相等的最大项.
A.①②
B.②④
C.③④
D.②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列函数中,最小值为4的有多少个?( ) ① ② (0<x<π) ③y=ex+4e﹣x④y=log3x+4logx3.
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在下列命题中,下列选项正确的是( )
A. 在回归直线中,变量时,变量的值一定是15.
B. 两个变量相关性越强,则相关系数就越接近于1.
C. 在残差图中,残差点比较均匀落在水平的带状区域中即可说明选用的模型比较合适,与带状区域的宽度无关.
D. 若是两个相等的非零实数,则是纯虚数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正三棱柱ABC﹣A1B1C1中,已知D,E分别为BC,B1C1的中点,点F在棱CC1上,且EF⊥C1D.求证:
(1)直线A1E∥平面ADC1;
(2)直线EF⊥平面ADC1 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】奇函数f(x)定义域是(﹣1,0)∪(0,1),f()=0,当x>0时,总有(x)f′(x)ln(1﹣x2)>2f(x)成立,则不等式f(x)>0的解集为( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(Ⅰ)证明MN∥平面PAB;
(Ⅱ)求直线AN与平面PMN所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com