精英家教网 > 高中数学 > 题目详情

【题目】抛物线的焦点为FP为其上一动点,设直线l与抛物线C相交于AB两点,点下列结论正确的是(

A.|PM| +|PF|的最小值为3

B.抛物线C上的动点到点的距离最小值为3

C.存在直线l,使得AB两点关于对称

D.若过AB的抛物线的两条切线交准线于点T,则AB两点的纵坐标之和最小值为2

【答案】AD

【解析】

根据抛物线的性质对每个命题进行判断.

A.设是抛物线的准线,过,则,当且仅当三点共线时等号成立.所以最小值是3A正确;

B.设是抛物线上任一点,即时,B错误;

C.假设存在直线,使得AB两点关于对称,设方程为,由

所以,设,则中点为,则必在直线上,

所以,这与直线抛物线相交于两个点矛盾,故不存在,C错误;

D.设,由,得,则切线方程为

,同理方程是

,解得,由题意在准线上,

所以

所以

所以时,为最小值.D正确.

故选:AD

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数的图像大致是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高中三个年级共有4000人,为了了解各年级学周末在家的学习情况,现通过分层抽样的方法获得相关数据如下(单位:小时),其中高一学生周末的平均学习时间记为.

高一:14 15 15.5 16.5 17 17 18 19

高二:15 16 16 16 17 17 18.5

高三:16 17 18 21.5 24

(1)求每个年级的学生人数;

(2)从高三被抽查的同学中随机抽取2人,求2人学习时间均超过的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现从某学校中选出名学生,统计了名学生一周的户外运动时间(分钟)总和,得到如图所示的频率分布直方图和统计表格.

1)写出的值,并估计该学校人均每周的户外运动时间(同一组数据用该组区间的中点值作代表);

2)假设,则户外运动时长为的学生中,男生人数比女生人数多的概率.

3)若,完成下列列联表,并回答能否有90%的把握认为“每周至少运动130分钟与性别有关”?

每周户外运动时间不少于130分钟

每周户外运动时间少于130分钟

合计

合计

附:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别是椭圆的左,右焦点,两点分别是椭圆的上,下顶点,是等腰直角三角形,延长交椭圆点,且的周长为.

1)求椭圆的方程;

2)设点是椭圆上异于的动点,直线与直分别相交于两点,点,求证:的外接圆恒过原点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C 与圆相交于MNPQ四点,四边形MNPQ为正方形,△PF1F2的周长为

1)求椭圆C的方程;

2)设直线l与椭圆C相交于AB两点若直线AD与直线BD的斜率之积为,证明:直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为实数,用表示不超过的最大整数,例如,对于函数,若存在,使得,则称函数是“函数”.

1)判断函数是否是“函数”;

2)设函数是定义在上的周期函数,其最小正周期是,若不是“函数”,求的最小值;

3)若函数是“函数”,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数,它的导函数为.

(1)当时,求的零点;

(2)若函数存在极小值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)的单调递减区间为.

I)求a的值;

II)证明:当时,

III)若存在,使得当时,恒有,求实数k的取值范围.

查看答案和解析>>

同步练习册答案