精英家教网 > 高中数学 > 题目详情

【题目】时代悄然来临,为了研究中国手机市场现状,中国信通院统计了2019年手机市场每月出货量以及与2018年当月同比增长的情况,得到如下统计图,根据该统计图,下列说法错误的是(

A.2019年全年手机市场出货量中,5月份出货量最多

B.2019年下半年手机市场各月份出货量相对于上半年各月份波动小

C.2019年全年手机市场总出货量低于2018年全年总出货量

D.201812月的手机出货量低于当年8月手机出货量

【答案】D

【解析】

根据统计图,逐项分析即可.

对于A,由柱状图可得五月出货量最高,故A正确;

对于B,根据曲线幅度可得下半年波动比上半年波动小,故B正确;

对于C,根据曲线上数据可得仅仅四月五月比同比高,其余各月均低于2018年,

且明显总出货量低于2018年,故C正确;

对于D,可计算的201812月出货量为8月出货量为,故12月更高,故D错误,

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月AB两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中AB两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:

支付金额

支付方式

不大于2000

大于2000

仅使用A

27

3

仅使用B

24

1

(Ⅰ)估计该校学生中上个月AB两种支付方式都使用的人数;

(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;

(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新型冠状病毒蔓延以来,世界各国都在研制疫苗,某专家认为,某种抗病毒药品对新型冠状病毒具有抗病毒、抗炎作用,假如规定每天早上700和晚上700各服药一次,每次服用该药药量700毫克具有抗病毒功效,若人的肾脏每12小时从体内滤出这种药的70%,该药在人体内含量超过1000毫克,就将产生副作用,若人长期服用这种药,则这种药__________(填“会”或者“不会”)对人体产生副作用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在其定义域内有两个不同的极值点.

1)求的取值范围;

2)设两极值点分别为,且,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,给出以下四个命题:

的图象关于轴对称;

上是减函数;

是周期函数;

上恰有两个零点.

其中真命题的序号是______.(请写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)讨论上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程是,以极点为原点,极轴为轴非负半轴建立平面直角坐标系,直线的参数方程为为参数).

1)写出曲线的直角坐标方程和直线的普通方程;

2)在(1)中,设曲线经过伸缩变换得到曲线,设曲线上任意一点为,当点到直线的距离取最大值时,求此时点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则关于的方程)的实根个数(

A.B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,直线过右焦点,过点的直线交椭圆两点(均不为顶点)

1)求椭圆的方程;

2)已知是椭圆的右顶点,直线,若直线与直线交于点直线与直线交于点,试判断是否为定值,若是,求出定值,若不是请说明理由.

查看答案和解析>>

同步练习册答案