精英家教网 > 高中数学 > 题目详情
8.函数f(x)=$\frac{2x+1}{x+1}$.
(1)用定义证明函数的单调性并写出单调区间;
(2)求f(x)在[3,5]上最大值和最小值.

分析 (1)分离常数得到f(x)=$2-\frac{1}{x+1}$,根据反比例函数的单调性便可看出f(x)的单调递增区间为(-∞,-1),(-1,+∞),根据单调性的定义证明:设任意的x1,x2≠-1,且x1<x2,然后作差,通分,说明x1,x2∈(-∞,-1),或x1,x2∈(-1,+∞)上时都有f(x1)<f(x2),这样即可得出f(x)的单调区间;
(2)根据f(x)的单调性便知f(x)在[3,5]上单调递增,从而可以求出f(x)的值域,从而可以得出f(x)在[3,5]上的最大、最小值.

解答 解:(1)$f(x)=\frac{2(x+1)-1}{x+1}=2-\frac{1}{x+1}$;
该函数的定义域为{x|x≠-1},设x1,x2∈{x|x≠-1},且x1<x2,则:
$f({x}_{1})-f({x}_{2})=\frac{1}{{x}_{2}+1}-\frac{1}{{x}_{1}+1}=\frac{{x}_{1}-{x}_{2}}{({x}_{1}+1)({x}_{2}+1)}$;
∵x1<x2
∴x1-x2<0;
∴x1,x2∈(-∞,-1)时,x1+1<0,x2+1<0;x1,x2∈(-1,+∞)时,x1+1>0,x2+1>0;
∴(x1+1)(x2+1)>0;
∴f(x1)<f(x2);
∴f(x)在(-∞,-1),(-1,+∞)上单调递增,即f(x)的单调增区间为(-∞,-1),(-1,+∞);
(2)由上面知f(x)在[3,5]上单调递增;
∴f(3)≤f(x)≤f(5);
∴$\frac{7}{4}≤f(x)≤\frac{11}{6}$;
∴f(x)在[3,5]上的最大值为$\frac{11}{6}$,最小值为$\frac{7}{4}$.

点评 考查分离常数法的运用,反比例函数的单调性和单调区间,根据单调性的定义找函数单调区间的方法和过程,根据函数单调性求函数在闭区间上的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知sin75°=$\frac{\sqrt{6}-\sqrt{2}}{4}$,求cos15°,cos165°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.甲、乙两袋装有大小相同的红球和白球,其中甲袋装有1个红球,4个白球;乙袋装有2个红球,3个白球.现从甲、乙两袋中各任取2个球.
(Ⅰ)用ξ表示取到的4个球中红球的个数,求ξ的分布列及ξ的数学期望;
(Ⅱ)求取到的4个球中至少有2个红球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,∠ACB=90°,D为BC的中点,PA⊥平面ABC,如果PB,PC与平面ABC所成角分别为30°、60°,那么PD与平面ABC所成角的大小为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a,b∈N*,记R(a\b)为a除以b所得的余数,执行如图所示的程序框图,若输入a=243,b=45,则输出的值等于(  )
A.0B.1C.9D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x-1-alnx(其中a为参数).
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若对任意x>0都有f(x)≥0成立,求a的取值范围;
(Ⅲ)点A(x1,y1),B(x2,y2)为曲线y=f(x)上的两点,且0<x1<x2,设直线AB的斜率为k,${x_0}=\frac{{{x_1}+{x_2}}}{2}$,当k>f'(x0)时,证明a<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义集合运算A⊙B={c|c=a+b,a∈A,b∈B},设A={0,1,2},B={3,4,5},则集合A⊙B的真子集个数为(  )
A.63B.31C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,S-ABCD是正四棱锥,已知底面边长AB=6cm,侧棱SA=3$\sqrt{5}$cm,求该正四棱锥的侧面SAB的斜高SE和底面AC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点,沿直线BD将△BCD翻折成△BC′D,使得平面BC′D⊥平面ABD.
(Ⅰ)求证:平面DEC′⊥平面ABD;
(Ⅱ)求直线BD与平面BEC′所成角的正弦值.

查看答案和解析>>

同步练习册答案