精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右两个焦点分别为P是椭圆上位于第一象限内的点,轴,垂足为Q的面积为.

1)求椭圆F的方程:

2)若M是椭圆上的动点,求的最大值,并求出取得最大值时M的坐标.

【答案】(1)(2)最大值为,此时点M的坐标为.

【解析】

(1),根据,求出,再根据余弦定理求出,然后由定义求出,然后由求出,从而可得椭圆的方程.

(2)根据面积求出的坐标,再根据二次函数求出的最大值.

1)在中,由,,所以,

因为,所以,

所以,所以,

中,由余弦定理得:,

所以,

所以,

,

,

椭圆F的方程为.

2)设,根据题意可知,所以,代入椭圆方程得,

的坐标为,

代入椭圆方程,,其中,

时,的最大值为,

的最大值为,此时点M的坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设点是抛物线上的动点,的准线上的动点,直线且与为坐标原点)垂直,则点的距离的最小值的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一位幼儿园老师给班上kk≥3)个小朋友分糖果.她发现糖果盒中原有糖果数为a0,就先从别处抓2块糖加入盒中,然后把盒内糖果的分给第一个小朋友;再从别处抓2块糖加入盒中,然后把盒内糖果的分给第二个小朋友;,以后她总是在分给一个小朋友后,就从别处抓2块糖放入盒中,然后把盒内糖果的分给第nn=123k)个小朋友.如果设分给第n个小朋友后(未加入2块糖果前)盒内剩下的糖果数为an

1)当k=3a0=12时,分别求a1a2a3

2)请用an-1表示an;令bn=n+1an,求数列{bn}的通项公式;

3)是否存在正整数kk≥3)和非负整数a0,使得数列{an}nk)成等差数列,如果存在,请求出所有的ka0,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为为参数).以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的极坐标方程和曲线的直角坐标方程;

(2)设动直线分别与曲线相交于点,求当为何值时,取最大值,并求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学在全校范围内举办了一场“中国诗词大会”的比赛,规定初赛测试成绩不小于160分的学生进入决赛阶段比赛.现有200名学生参加测试,并将所有测试成绩统计如下表:

分数段

频数

频率

6

0.03

0.38

100

0.5

6

0.03

合计

200

1

(1)计算的值;

(2)现利用分层抽样的方法从进入决赛的学生中选择6人,再从选出的6人中选2人做进一步的研究,求选择的2人中至少有1人的分数在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系xOy的坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程是,曲线C2的参数方程是(θ为参数)

(1)写出曲线C1C2的普通方程;

(2)设曲线C1y轴相交于AB两点,点P为曲线C2上任一点,求|PA|2|PB|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中直线与抛物线C交于AB两点,且

C的方程;

D为直线外一点,且的外心MC上,求M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,点为半径为千米的圆形海岛的最东端,点为最北端,在点的正东千米处停泊着一艘缉私艇,某刻,发现在处有一小船正以速度 (千米/小时)向正北方向行驶,已知缉私艇的速度为(千米/小时) .

(1)为了在最短的时间内拦截小船检查,缉私艇应向什么方向行驶? (精确到)

(2)海岛上有一快艇要为缉私艇送去给养,问选择海岛边缘的哪一点出发才能行程最短? (如图2建立坐标系, 用坐标表示点的位置)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心C在直线上.

若圆Cy轴的负半轴相切,且该圆截x轴所得的弦长为,求圆C的标准方程;

已知点,圆C的半径为3,且圆心C在第一象限,若圆C上存在点M,使为坐标原点,求圆心C的纵坐标的取值范围.

查看答案和解析>>

同步练习册答案