最少要取出11个棋子,才可能满足要求。其原因如下:
如果一个方格在第
i行第
j列,则记这个方格为(
i,
j)。
第一步证明若任取10个棋子,则余下的棋子必有一个五子连珠,即五个棋子在一条直线(横、竖、斜方向)上依次相连。用反证法。假设可取出10个棋子,使余下的棋子没有一个五子连珠。如图1,在每一行的前五格中必须各取出一个棋子,后三列的前五格中也必须各取出一个棋子。这样,10个被取出的棋子不会分布在右下角的阴影部分。同理,由对称性,也不会分布在其他角上的阴影部分。第1、2行必在每行取出一个,且只能分布在(1,4)、(1,5)、(2,4)、(2,5)这些方格。同理(6,4)、(6,5)、(7,4)、(7,5)这些方格上至少要取出2个棋子。在第1、2、3列,每列至少要取出一个棋子,分布在(3,1)、(3,2)、(3,3)、(4,1)、(4,2)、(4,3)、(5,1)、(5,2)、(5,3)所在区域,同理(3,6)、(3,7)、(3,8)、(4,6)、(4,7)、(4,8)、(5,6)、(5,7)、(5,8)所在区域内至少取出3个棋子。这样,在这些区域内至少已取出了10个棋子。因此,在中心阴影区域内不能取出棋子。由于①、②、③、④这4个棋子至多被取出2个,从而,从斜的方向看必有五子连珠了。矛盾。
图1 图2
第二步构造一种取法,共取走11个棋子,余下的棋子没有五子连珠。如图2,只要取出有标号位置的棋子,则余下的棋子不可能五子连珠。
综上所述,最少要取走11个棋子,才可能使得余下的棋子没有五子连珠。