精英家教网 > 高中数学 > 题目详情

【题目】已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时, >0,若a=f(1),b=﹣2f(﹣2),c=(ln )f(ln ),则a,b,c的大小关系正确的是(
A.a<c<b
B.b<c<a
C.a<b<c
D.c<a<b

【答案】D
【解析】解:设g(x)=xf(x), ; ∵x≠0时,
∴x>0时,g′(x)>0;
∴g(x)在(0,+∞)上单调递增;
∵f(x)为奇函数;
∴b=﹣2f(﹣2)=2f(2),
又a=f(1)=1f(1);
∵ln2<1<2,g(x)在(0,+∞)上单调递增;
∴g(ln2)<g(1)<g(2);
即(ln2)f(ln2)<1f(1)<2f(2);
∴c<a<b.
故选:D.
根据a,b,c的表示形式构造函数g(x)=xf(x),根据条件可说明x>0时,g′(x)>0,这便得到g(x)在(0,+∞)上单调递增.而由f(x)为奇函数便可得到b=2f(2),c=(ln2)f(ln2),而容易判断ln2<1<2,从而得到g(ln2)<g(1)<g(2),这样便可得出a,b,c的大小关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求证:存在定点,使得函数图象上任意一点关于点对称的点也在函数的图象上,并求出点的坐标;

(2)定义,其中,求

(3)对于(2)中的,求证:对于任意都有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题共12分)

已知函数 为自然对数的底数).

(Ⅰ)讨论的单调性;

(Ⅱ)当时,不等式恒成立,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg(x2+ax﹣a﹣1),给出下列命题:
①函数f(x)有最小值;
②当a=0时,函数f(x)的值域为R;
③若函数f(x)在区间(﹣∞,2]上单调递减,则实数a的取值范围是a≤﹣4.
其中正确的命题是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,定直线,动点到点的距离与到直线的距离之比等于.

(1)求动点的轨迹的方程;

(2)设轨迹轴负半轴交于点,过点作不与轴重合的直线交轨迹于两点,直线分别交直线于点.试问:在轴上是否存在定点,使得?若存在,求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若以曲线上任意一点为切点作切线,曲线上总存在异于的点,以点为切点作切线,且,则称曲线具有“可平行性”,现有下列命题:

①函数的图象具有“可平行性”;

②定义在的奇函数的图象都具有“可平行性”;

③三次函数具有“可平行性”,且对应的两切点 的横坐标满足

④要使得分段函数的图象具有“可平行性”,当且仅当.

其中的真命题个数有()

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面分别是的中点,.

(1)求二面角的余弦值;

(2)点是线段上的动点,当直线所成的角最小时,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】实数m取什么数值时,复数z=m2﹣1+(m2﹣m﹣2)i分别是:
(1)实数;
(2)虚数;复数z=m2﹣1+(m2﹣m﹣2)i是虚数, ∴m2﹣m﹣2≠0
∴m≠﹣1.m≠2
(3)纯虚数.

查看答案和解析>>

同步练习册答案