精英家教网 > 高中数学 > 题目详情
1.在平面直角坐标系xoy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C1的极坐标方程为ρ=4cosθ,曲线C2的参数方程为$\left\{\begin{array}{l}x=m+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$(t为参数).
(1)若C1与C2只有一个公共点,求实数m的值;
(2)若θ=$\frac{π}{3}$与C1交于点A(异于极点),θ=$\frac{5π}{6}({ρ∈R})$与C1交于点B(异于极点),与C2交于点C,若△ABC的面积为3$\sqrt{3}$,求实数m(m<0)的值.

分析 (1)将两个方程都化为普通方程,C1与C2只有一个公共点,直线与圆相切,圆心到直线的距离等于半径,即可求实数m的值;
(2)求|OA|,|OB|,|OC|,利用△ABC的面积为3$\sqrt{3}$,即可求实数m(m<0)的值.

解答 解:(1)曲线C1的极坐标方程为ρ=4cosθ,即x2+y2=4x,即(x-2)2+y2=4;
曲线C2的参数方程为$\left\{\begin{array}{l}x=m+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$(t为参数),消去t可得y=$\sqrt{3}$(x-m).
∵C1与C2只有一个公共点,
∴直线与圆相切,
∴$\frac{|2\sqrt{3}-\sqrt{3}m|}{2}$=2,∴m=2±$\frac{4\sqrt{3}}{3}$;
(2)θ=$\frac{π}{3}$与C1交于点A(异于极点),|OA|=2,θ=$\frac{5π}{6}({ρ∈R})$与C1交于点B(异于极点),|OB|=2$\sqrt{3}$,
曲线C2的极坐标方程为ρ=$\frac{\sqrt{3}m}{2cos(θ+\frac{π}{6})}$,θ=$\frac{5π}{6}({ρ∈R})$,|OC|=$\frac{\sqrt{3}}{2}$m,
∴S△ABC=$\frac{1}{2}×2×$(2$\sqrt{3}$-$\frac{\sqrt{3}}{2}$m)=3$\sqrt{3}$,∴m=-2.

点评 本题考查三种方程的互化,考查直线与圆的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知圆B:(x-1)2+(y-1)2=2,过原点O作两条不同的直线l1,l2与圆B分别交于P,Q.
(1)过圆心B作BA⊥OP,BC⊥OQ,垂足分别为点A,C,求过四点O,A,B,C的圆E的方程,并判断圆B与圆E的位置关系;
(2)若l1与l2的倾斜角互补,试用l1的倾斜角α表示△OPQ的面积,并求其最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),圆O:x2+y2=b2,过椭圆C的上顶点A的直线l:y=kx+b分别交圆O、椭圆C于不同的两点P、Q,设$\overrightarrow{AP}$=λ$\overrightarrow{PQ}$.
(1)若点P(-3,0),点Q(-4,-1),求椭圆C的方程;
(2)若λ=3,求椭圆C的离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知点A(-1,2),B(2,3),直线l:kx-y-k+1=0与线段AB相交,则实数k的取值范围是(  )
A.-$\frac{1}{2}$≤k≤2B.k≤-$\frac{1}{2}$或k≥2C.-2≤k≤$\frac{1}{2}$D.k≤-2或k≥$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.双曲线C1:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左右焦点分别为F1,F2,F2也是抛物线${C_1}:{y^2}=2px({p>0})$的焦点,点A是曲线Cl与C2在第一象限内的交点,且|AF2|=|F1F2|,则双曲线的离心率为1+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在直角梯形PBCD中,PB∥DC,DC⊥BC,点A在边PB上,AD∥BC,PB=3BC=6,现沿AD将△PAD折起,使平面PAD⊥平面ABCD.
(Ⅰ)当CD=BC时,证明:直线BD⊥平面PAC;
(Ⅱ)当三棱锥P-ABD的体积取得最大值时,求平面PBD与平面PCD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设α,β,γ表示平面,l表示直线,则下列命题中,错误的是(  )
A.如果α⊥β,那么α内一定存在直线平行于β
B.如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ
C.如果α不垂直于β,那么α内一定不存在直线垂直于β
D.如果α⊥β,那么α内所有直线都垂直于β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=x•cosx,则$f'({\frac{π}{2}})$的值为(  )
A.$-\frac{π}{2}$B.$\frac{π}{2}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求证:已知直线l与三条平行线a、b、c都相交(如图),求证:l与a、b、c共面.

查看答案和解析>>

同步练习册答案