精英家教网 > 高中数学 > 题目详情
若等差数列{an}的前三项为a+14,4a-3,3a,数列{an}的前n项为Sn的最大值为M,则lgM=(  )
A、4B、3C、2D、1
考点:等差数列的性质
专题:等差数列与等比数列
分析:由等差数列的性质结合等差数列的前三项求得a,进一步求得等差数列的首项和公差,代入等差数列的前n项和公式求得Sn的最大值为M,再由等差数列的性质得答案.
解答: 解:由a+14,4a-3,3a为等差数列的前三项,可得
2(4a-3)=a+14+3a,解得:a=5.
∴等差数列{an}的前三项为19,17,15,
则等差数列的公差为-2.
Sn=19n+
n(n-1)(-2)
2
=-n2+20n

则M=(Snmax=100.
∴lgM=lg100=2.
故选:C.
点评:本题考查了等差数列的性质,考查了对数的运算性质,考查了等差数列的前n项和,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列四组函数中,函数f(x)与g(x)表示同一个函数的是(  )
A、f(x)=
x2
,g(x)=(
x
)2
B、f(x)=x,g(x)=
x2
x
C、f(x)=x0,g(x)=1
D、f(x)=|x|,g(x)=
x,x≥0
-x,x<0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的方程为(2-t)x2+(3-t)y2=(2-t)(3-t),t<3.
(1)就t的不同取值讨论方程所表示的曲线C的形状;
(2)若t=-1,过点P(4,0)且不垂直于x轴的直线l与曲线C相交于A,B两点.
①求
OA
OB
的取值范围;
②若B点关于x轴的对称点为E点,探索直线AE与x轴的相交点是否为定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2x+a(x∈[0,3]),它的任意三个函数值总可以作为一个三角形的三边长,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:函数f(x)=(3-a)x为增函数,命题q:函数f(x)=|x|+a无零点
(1)若p∧q为真命题,求实数a的取值范围.
(2)若(¬p)∧q为真命题,判断p∨(¬q)的真假,并求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,平面向量 
OA
=(1,3),
OB
=(3,5),
OP
=(1,2),且
OX
=k
OP
(k为实数).当
XA
XB
取得最小值时,点X的坐标是(  )
A、(4,2)
B、(2,4)
C、(6,3)
D、(3,6)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=2,求:
(Ⅰ)
2sinα+cosα
sinα-cosα

(Ⅱ)2sinαcosα+cos2α+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
4
5
,α∈(
π
2
,π).
(1)求cosα,tanα的值;
(2)求cos2α的值;
(3)求sin(α+
π
6
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,塔AB底部为点B,若C,D两点相距为100m并且与点B在同一水平线上,现从C,D两点测得塔顶A的仰角分别为45°和30°,则塔AB的高约为(精确到0.1m,
3
≈1.73,
2
≈1.41)(  )
A、36.5B、115.6
C、120.5D、136.5

查看答案和解析>>

同步练习册答案