已知是定义在上的奇函数,且当x<0时不等式成立,若, ,则大小关系是
A. B.c > b > a C. D.c > a >b
D
【解析】
试题分析:令h(x)=xf(x),∵函数y=f(x)以及函数y=x是R上的奇函数,∴h(x)=xf(x)是R上的偶函数,又∵当x>0时,h′(x)=f(x)+xf′(x)<0,∴函数h(x)在x∈(0,+∞)时的单调性为单调递减函数;∴h(x)在x∈(-∞,0)时的单调性为单调递增函数.若a=30.3?f(30.3),b=logπ3.f(logπ3)又∵函数y=f(x)是定义在R上的奇函数,∴f(0)=0,从而h(0)=0,因为=-2,所以f()=f(-2)=-f(2),由0<logπ3<1<30.3<30.5<2,所以h(logπ3)<h(30.3)<h(2),即b<a<c,故选D
考点:本题考查了导数的运用
点评:1)所有的基本函数的奇偶性;2)抽象问题具体化的思想方法,构造函数的思想;3)导数的运算法则:(uv)′=u′v+uv′;4)指对数函数的图象;5)奇偶函数在对称区间上的单调性:奇函数在对称区间上的单调性相同;偶函数在对称区间上的单调性相反;5)奇偶函数的性质:奇×奇=偶;偶×偶=偶;奇×偶=奇(同号得正、异号得负);奇+奇=奇;偶+偶=偶.本题结合已知构造出h(x)是正确解答的关键所在.
科目:高中数学 来源: 题型:
f(a)+f(b) | a+b |
查看答案和解析>>
科目:高中数学 来源:2014届云南省高一上学期期中数学试卷(解析版) 题型:解答题
(本小题满分12分)已知函数是定义在上的奇函数,且,
(1)确定函数的解析式;
(2)用定义证明在上是增函数;
(3)解不等式.
【解析】第一问利用函数的奇函数性质可知f(0)=0
结合条件,解得函数解析式
第二问中,利用函数单调性的定义,作差变形,定号,证明。
第三问中,结合第二问中的单调性,可知要是原式有意义的利用变量大,则函数值大的关系得到结论。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省高三三月月考数学(理)试卷 题型:选择题
已知函数是定义在R上的奇函数,且,在[0,2]上是增函
数,则下列结论:
(1)若,则;[来源:Z§xx§k.Com]
(2)若且;
(3)若方程在[-8,8]内恰有四个不同的根,则;
其中正确的有( )
A.0个 B.1个 C.2个 D.3个
查看答案和解析>>
科目:高中数学 来源: 题型:
已知是定义在上的不恒为零的函数,且对于任意实数都有, 则
(A)是奇函数,但不是偶函数 (B)是偶函数,但不是奇函数
(C)既是奇函数,又是偶函数 (D)既非奇函数,又非偶函
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com