精英家教网 > 高中数学 > 题目详情

已知集合A={x|x2-x-12≤0,x∈Z},从集合A中任选三个不同的元素a,b,c组成集合M,则能够满足a+b+c=0的集合M的概率为=________.


分析:用列举法表示A,从集合A中任选三个不同的元素a,b,c,共有 种方法,用列举法求得满足a+b+c=0的(a,b,c )有6个,由此求得能够满足a+b+c=0的集合M的概率.
解答:∵已知集合A={x|x2-x-12≤0,x∈Z}={x|(x-4)(x+3)≤0,x∈Z }={-3,-2,-1,0,1,2,3,4},
从集合A中任选三个不同的元素a,b,c,所有的(a,b,c )共有=56种方法,这里(a,b,c )无排列顺序.
而满足a+b+c=0的(a,b,c )有 (-3,0,3)、(-2,0,2)、(-1,0,1)、(-1,-2,3)、
(-1,-3,4)、(-3,1,2),共6个,
故能够满足a+b+c=0的集合M的概率为 =
故答案为
点评:本题考查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,应用列举法来解题是这一部分的最
主要思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、已知集合A={x|x>1},集合B={x|x-4≤0},则A∪B等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x<1},B={x|x(x-2)≤0},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x<-2或3<x≤4},B={x||x-1|≤4}
求:
(1)CRA;
(2)A∪B;
(3)若C={x|x>a},且B∩C=B,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x≥1},B={x|x>2},则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳三模)已知集合A={x|
x-2
x+1
≤0},B={y|y=cosx,x∈R}
.则A∩B为(  )

查看答案和解析>>

同步练习册答案