精英家教网 > 高中数学 > 题目详情

【题目】已知动点M到定点F1(2,0)F2(2,0)的距离之和为.

1)求动点M的轨迹C的方程;

2)设N(0,2),过点P(1,-2)作直线l,交曲线C于不同于N的两点AB,直线NANB的斜率分别为k1k2,求k1k2的值.

【答案】(1);(2)4

【解析】

本题考查椭圆的基本量间的关系及韦达定理的应用

1)考查椭圆的基本量间的关系

2)是直线与椭圆相交于两点,先设出两点坐标,本题的突破口是在消参后的方程中找出两根之和、两根之积,整理斜率的表达式,在本问中需考虑直线的斜率是否存在

解:(1)由椭圆的定义,可知点M的轨迹是以F1F2为焦点,为长轴长的椭圆.

c2a2 ,得b2.

故动点M的轨迹C的方程为.

(2)当直线l的斜率存在时,设其方程为y2k(x1)

(12k2)x24k(k2)x2k28k0.

Δ[4k(k2)]24(12k2)(2k28k)>0,则k>0k<

A(x1y1)B(x2y2),则 .

从而

当直线l的斜率不存在时,得

所以k1k24.

综上,恒有k1k24.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列中,,且点)在直线上.

(1)求数列的通项公式;

(2)对任意的,将数列落入区间内的项的个数记为,求的通项公式;

(3)对于(2)中,记,数列项和为,求使等式成立的所有正整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《流浪地球》是由刘慈欣的科幻小说改编的电影,在2019年春节档上影,该片上影标志着中国电影科幻元年的到来;为了振救地球,延续百代子孙生存的希望,无数的人前仆后继,奋不顾身的精神激荡人心,催人奋进.某网络调查机构调查了大量观众的评分,得到如下统计表:

评分

1

2

3

4

5

6

7

8

9

10

频率

0.03

0.02

0.02

0.03

0.04

0.05

0.08

0.15

0.21

0.36

1)求观众评分的平均数?

2)视频率为概率,若在评分大于等于8分的观众中随机地抽取1人,他的评分恰好是10分的概率是多少?

3)视频率为概率,在评分大于等于8分的观众中随机地抽取4人,用表示评分为10分的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线上的动点到点的距离与到直线的距离相等.

1)求曲线的轨迹方程;

2)过点分别作射线交曲线于不同的两点,且以为直径的圆经过点.试探究直线是否过定点?如果是,请求出该定点;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,

(1)当时,求上的最大值和最小值;

(2)当时,过点作函数的图象的切线,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列的前项和为,且.数列的前项和为,满足

1)求数列的通项公式;

2)写出一个正整数,使得是数列的项;

3)设数列的通项公式为,问:是否存在正整数,使得成等差数列?若存在,请求出所有符合条件的有序整数对;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,椭圆的短半轴长等于圆的半径,且过右焦点的直线与圆相切于点

1)求椭圆的方程;

2)若动直线与圆相切,且与相交于两点,求点到弦的垂直平分线距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,是一块边长为7米的正方形铁皮,其中是一半径为6米的扇形,已经被腐蚀不能使用,其余部分完好可利用.工人师傅想在未被腐蚀部分截下一个有边落在BCCD上的长方形铁皮,其中P上一点.设,长方形的面积为S平方米.

1)求S关于的函数解析式;

2)设,求S关于t的表达式以及S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知AB是圆O的直径,CD是圆上不同两点,且O所在平面.

1)求直线PBCD所成角;

2)若PB与圆O所在平面所成角为,且,求二面角的余弦值.

查看答案和解析>>

同步练习册答案