A. | y=-x-1 | B. | y=x+1 | C. | y=x-1 | D. | y=-x+1 |
分析 由题意可得设直线l的方程为y=kx-1,联立直线与抛物线的方程可得:x2+2kx-2=0,根据韦达定理可得答案.
解答 解:由题意可得直线l的斜率存在,设直线l的方程为y=kx-1,A(x1,y1),B(x2,y2),
所以联立直线与抛物线x2=-2y可得:x2+2kx-2=0,
所以x1+x2=-2k,x1x2=-2,
因为OA和OB的斜率之和为1,即 $\frac{{y}_{1}}{{x}_{1}}$+$\frac{{y}_{2}}{{x}_{2}}$=1,
所以 $\frac{{kx}_{1}-1}{{x}_{1}}$+$\frac{{kx}_{2}-1}{{x}_{2}}$=2k-$\frac{{x}_{1}+{x}_{2}}{{x}_{1}{x}_{2}}$=1,
所以k=1,
所以直线l的方程为y=x-1.
故选:C.
点评 本题主要考查抛物线的简单性质、直线的一般式方程、直线与抛物线的位置关系,以及方程思想,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | 1 | C. | 16或1 | D. | $\frac{16}{3}$或3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 若a≤1且b≤1,则a+b≤2 | B. | 若a≤1或b≤1,则a+b≤2 | ||
C. | 若a+b≤2,则a≤1且b≤1 | D. | 若a+b≤2,则a≤1或b≤1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com