精英家教网 > 高中数学 > 题目详情

【题目】已知A (1,2),B(a,1),C(2,3),D(﹣1,b)(a,b∈R)是复平面上的四个点,且向量 对应的复数分别为z1 , z2 . (Ⅰ)若z1+z2=1+i,求z1 , z2
(Ⅱ)若|z1+z2|=2,z1﹣z2为实数,求a,b的值.

【答案】解:(I)向量 =(a﹣1,﹣1), =(﹣3,b﹣3)对应的复数分别为z1=(a﹣1)﹣i,z2=﹣3+(b﹣3)i.

∴z1+z2=(a﹣4)+(b﹣4)i=1+i.

∴a﹣4=1,b﹣4=1.

解得a=b=5.

∴z1=4﹣i,z2=﹣3+2i.

(II)|z1+z2|=2,z1﹣z2为实数,

=2,(a+2)+(2﹣b)i∈R,

∴2﹣b=0,解得b=2,

∴(a﹣4)2+4=4,解得a=4.

∴a=4,b=2.


【解析】(I)向量 =(a﹣1,﹣1), =(﹣3,b﹣3)对应的复数分别为z1=(a﹣1)﹣i,z2=﹣3+(b﹣3)i.利用z1+z2=(a﹣4)+(b﹣4)i=1+i.即可得出a,b.(II)|z1+z2|=2,z1﹣z2为实数,可得 =2,(a+2)+(2﹣b)i∈R,即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】画棱长为2 cm的正方体的直观图.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2﹣2ax﹣8a2(a>0),记不等式f(x)≤0的解集为A.
(1)当a=1时,求集合A;
(2)若(﹣1,1)A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣2x+ex ,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的公差d>0,且a1>0,记Tn= + ++
(1)用a1、d分别表示T1、T2、T3 , 并猜想Tn
(2)用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2﹣(2a+1)x+lnx(a∈R) (Ⅰ)当a>0时,求函数f(x)的单调区间;
(Ⅱ)设g(x)=f(x)+2ax,若g(x)有两个极值点x1 , x2 , 且不等式g(x1)+g(x2)<λ(x1+x2)恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,PA⊥平面ABC,AE⊥PB,AB⊥BC,AF⊥PC,PA=AB=BC.

(1)求证:平面AEF⊥平面PBC.

(2)求二面角P-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面 .

(I)求异面直线所成角的余弦值;

(II)求证: 平面

(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形.

(1)求该几何体的体积;

(2)求该几何体的表面积.

查看答案和解析>>

同步练习册答案