精英家教网 > 高中数学 > 题目详情
(2013•济南二模)已知数列{an}的前n项和为Sn,且Sn=2an-2,数列{bn}满足b1=1,且bn+1=bn+2.
(1)求数列{an},{bn}的通项公式;
(2)设cn=
1-(-1)n
2
an-
1+(-1)n
2
bn
,求数列{cn}的前2n项和T2n
分析:(1)当n=1,可求a1,n≥2时,an=Sn-Sn-1可得an与an-1的递推关系,结合等比数列的通项公式可求an,由bn+1=bn+2,可得{bn}是等差数列,结合等差数列的通项公式可求bn
(2)由题意可得cn=
2n
-(2n-1)
n为奇数
n为偶数
,然后结合等差数列与等比数列的求和公式,利用分组求和即可求解
解答:解:(1)当n=1,a1=2;                         …(1分)
当n≥2时,an=Sn-Sn-1=2an-2an-1
∴an=2an-1.…(2分)
∴{an}是等比数列,公比为2,首项a1=2,
an=2n.…(3分)
由bn+1=bn+2,得{bn}是等差数列,公差为2.…(4分)
又首项b1=1,
∴bn=2n-1.…(6分)
(2)cn=
2n
-(2n-1)
n为奇数
n为偶数
…(8分)
T2n=2+23+…+22n-1+[3+7+…+(4n-1)]
=
2(1-4n)
1-4
+
3+4n-1
2
•n
(10分)
=
22n+1-2
3
-2n2-n
.                      …(12分)
点评:本题主要考查了等差数列、等比数列的通项公式的应用及求和公式的应用,体现了分类讨论思想的应用
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•济南二模)函数y=2sin(
π
2
-2x)
是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南二模)对大于或等于2的自然数m的n次方幂有如下分解方式:
    22=1+3   23=3+5                    
  32=1+3+5   33=7+9+11                   
42=1+3+5+7  43=13+15+17+19                  
    52=1+3+5+7+9           53=21+23+25+27+29
根据上述分解规律,若m3(m∈N*)的分解中最小的数是73,则m的值为
9
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南二模)若椭圆C1
x2
a12
+
y2
b12
=1
(a1>b1>0)和椭圆C2
x2
a22
+
y2
b22
=1
(a2>b2>0)的焦点相同且a1>a2.给出如下四个结论:
①椭圆C1和椭圆C2一定没有公共点;
a1
a2
b1
b2

③a12-a22=b12-b22
④a1-a2<b1-b2
其中,所有正确结论的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南二模)某学校周五安排有语文、数学、英语、物理、化学、体育六节课,要求体育不排在第一节课,数学不排在第四节课,则这天课程表的不同排法种数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南二模)已知数列{an}满足a1=3,an+1-3an=3n(n∈N*),数列{bn}满足bn=
an3n

(1)证明数列{bn}是等差数列并求数列{bn}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

同步练习册答案