精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,若满足
y≥|x|
y≤ax+1
的点P表示的区域为三角形,则实数a的范围是.
A、(-1,1)
B、(-∞,-1)
C、(1,+∞)
D、(-∞,-1)∪(1,+∞)
考点:二元一次不等式(组)与平面区域
专题:不等式的解法及应用
分析:根据题意,在同一直角坐标系内画出y≥|x|所表示的平面区域以及y=ax+1表示的直线系,结合图形得出构成三角形的条件是什么.
解答: 解:根据题意,①画y≥|x|所表示的平面区域,
②y=ax+1表示过(0,1)的直线系,
当a=±1时直线y=ax+1与y≥|x|的边界平行;
③旋转该直线观察当直线旋转至-1<a<1时能构成三角形.
故选:A.
点评:本题考查了用不等式组表示平面区域的应用问题,也考查了数形结合的数学思想,是基础题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+
2
=0相切.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于两点 A,B,设P为椭圆上一点,且满足
OA
+
OB
=t
OP
( O为坐标原点),当|
PA
-
PB
|<
2
5
3
时,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:a,b,c均为正实数,则(a+b+c)(
1
a+b
+
1
c
)的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:方程x2+y2+4mx-2y+5m=0表示圆,命题q:向量
a
=(m,-1,
2
)
的模小于2,若p∧q为真命题,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

小波以游戏方式决定是去打球,唱歌还是去下棋,游戏规则为以O为顶点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取不同的两点得到∠Ai0Aj(0°<∠AiOAj≤180°)i,j∈{1,2,3,4,5,6}若∠AiOAj为钝角或平角就去打球,若∠AiOAj为直角就去唱歌,若∠AiOAj为锐角就去下棋,则小波去打球的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中正确的是(  )
A、用简单随机抽样、系统抽样和分层抽样的方法抽取样本时,要求个体被抽取到的概率相等,但是在系统抽样中,如果不能平均分组时,除剔除的某些个体被抽取到的概率就和后面参与抽取的其它个体被抽取的概率不同
B、在频率分布直方图中,中位数左边和右边的直方图的面积相等
C、在相同条件下的重复试验中,某一随机事件出现的频率就是该随机事件的概率
D、在一定条件下,概率为0的事件一定是不可能事件

查看答案和解析>>

科目:高中数学 来源: 题型:

若把一个正方形用斜二测画法画出,有下列说法:
①所得图形一定是矩形;
②所得图形一定是平行四边形;
③所得图形一定是梯形;
④原正方形的中心一定是所得图形对角线的交点.
其中正确的是(  )
A、①②③④B、②④
C、③④D、②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
1
2
sin2x是(  )
A、最小正周期为2π的偶函数
B、最小正周期为2π的奇函数
C、最小正周期为π的偶函数
D、最小正周期为π的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:

设i是虚数单位,则复数
1
-1+i
的虚部是
 

查看答案和解析>>

同步练习册答案