精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(Ⅰ)讨论函数的单调性;

(Ⅱ)当时,恒成立,求的取值范围.

【答案】(Ⅰ)详见解析;(Ⅱ)

【解析】

(Ⅰ),对进行分类讨论分两种情况,画出相应导函数的草图,得出结论;

(Ⅱ),则,对则求导,判断单调性得出最大值点进行求解

(Ⅰ)由题可得

时,恒成立,所以函数上单调递增;

时,令;令,得

所以函数上单调递减,在上单调递增.

综上,当时,函数上单调递增;当时,函数上单调递减,在上单调递增.

(Ⅱ),即

,则

易得

,则

所以函数上单调递减,

①当时,,则,所以

所以函数上单调递减,所以,满足

②当时,

所以存在,使得

所以当时,;当时,

所以函数上单调递增,在上单调递减,

,所以,所以不满足

综上可得,故的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,平面四边形中,EF中点,,将沿对角线折起至,使平面平面,则四面体中,下列结论不正确的是(

A.平面B.异面直线所成的角为90°

C.异面直线所成的角为60°D.直线与平面所成的角为30°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:极坐标与参数方程]

在直角坐标系中,曲线的参数方程为是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的极坐标方程和曲线的直角坐标方程;

(2)若射线 与曲线交于两点,与曲线交于两点,求取最大值时的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校为增加应届毕业生就业机会,每年根据应届毕业生的综合素质和学业成绩对学生进行综合评估,已知某年度参与评估的毕业生共有2000名.其评估成绩近似的服从正态分布.现随机抽取了100名毕业生的评估成绩作为样本,并把样本数据进行了分组,绘制了如下频率分布直方图:

1)求样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);

2)若学校规定评估成绩超过82.7分的毕业生可参加三家公司的面试.

用样本平均数作为的估计值,用样本标准差作为的估计值.请利用估计值判断这2000名毕业生中,能够参加三家公司面试的人数;

附:若随机变量,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设常数,函数

(1)当时,判断上单调性,并加以证明;

(2)当时,研究的奇偶性,并说明理由;

(3)当时,若存在区间使得上的值域为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样检查,测得身高情况的统计图如下:

(1)估计该校男生的人数;并求出

(2)估计该校学生身高在之间的概率;

(3)从样本中身高在之间的女生中任选2人,求至少有1人身高在之间的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面,四边形是矩形,分别是棱的中点.

(1)求证:平面

(2)若,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了节能减排,发展低碳经济,我国政府从2001年起就通过相关扶植政策推动新能源汽车产业发展.下面的图表反映了该产业发展的相关信息:

2019年2月份新能源汽车销量结构图根据上述图表信息,下列结论错误的是( )

A.2018年4月份我国新能源汽车的销量高于产量

B.2017年3月份我国新能源汽车的产量不超过3.4万辆

C.2019年2月份我国插电式混合动力汽车的销量低于1万辆

D.2017年我国新能源汽车总销量超过70万辆

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率,椭圆上的点到左焦点的距离的最大值为3.

(1)求椭圆的方程;

(2)求椭圆的外切矩形的面积的取值范围.

查看答案和解析>>

同步练习册答案