精英家教网 > 高中数学 > 题目详情

【题目】在2018年俄罗斯世界杯期间,莫斯科的部分餐厅经营了来自中国的小龙虾,这些小龙虾标有等级代码.为得到小龙虾等级代码数值与销售单价之间的关系,经统计得到如下数据:

等级代码数值

38

48

58

68

78

88

销售单价(元

16.8

18.8

20.8

22.8

24

25.8

(1)已知销售单价与等级代码数值之间存在线性相关关系,求关于的线性回归方程(系数精确到0.1);

(2)若莫斯科某餐厅销售的中国小龙虾的等级代码数值为98请估计该等级的中国小龙虾销售单价为多少元?

参考公式:对一组数据,,····,其回归直线的斜率和截距最小二乘估计分别为:,.

参考数据:,.

【答案】(1);(2)28.5.

【解析】

(1)根据所给的数据做出变量的平均数根据最小二乘法所需要的数据做出线性回归方程的系数,再根据样本中心点一定在线性回归方程上求出的值可得线性回归方程; (2)根据上一问做出的线性回归方程,代入线性回归方程求出对应的的值即可估计该等级的中国小龙虾销售单价.

(1)由题意得,

.

所以回归方程为

(2)由(1)知当

故估计该等级的中国小龙虾销售单价为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线为参数,实数),曲线为参数,实数).在以为极点,轴的正半轴为极轴的极坐标系中,射线交于两点,与交于两点.当时,;当.

(1)求的值.

(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥M-ABC中,MA=MB=MC=AC=AB=BC=2OAC的中点,点N在边BC上,且.

1)证明:BO平面AMC

2)求二面角N-AM-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥平面ABCDABADADBCAPABAD=1.

(Ⅰ)若直线PBCD所成角的大小为BC的长;

(Ⅱ)求二面角BPDA的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)当为自然对数的底数)时,求的极小值;

2)讨论函数零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】称直角坐标系中纵横坐标均为整数的 点为格点”,称一格点沿坐标线到原点的最短路程为该点到原点的格点距离”,格点距离为定值的点的轨迹称为格点圆”,该定值称为格点圆的半径而每一条最短路程称为一条半径当格点半径为2005格点圆的半径有________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用 (基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费是与上一年度车辆发生道路交通安全违法行为或者道路交通事故的情况相联系的.交强险第二年价格计算公式具体如下:交强险最终保费基准保费浮动比率).发生交通事故的次数越多,出险次数的就越多,费率也就越髙,具体浮动情况如下表:

某机构为了研究某一品牌普通6座以下私家车的投保情况,为此搜集并整理了100辆这一品牌普通6座以下私家车一年内的出险次数,得到下面的柱状图:

已知小明家里有一辆该品牌普通6座以下私家车且需要续保,续保费用为.

1为事件的估计值;

2的平均估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,DAB上一点,且平面.

1)求证:

2)若四边形是矩形,且平面平面ABC,直线与平面ABC所成角的正切值等于2,求三楼柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,准线为,抛物线上存在一点,过点,垂足为,使是等边三角形且面积为.

(1)求抛物线的方程;

(2)若点是圆与抛物线的一个交点,点,当取得最小值时,求此时圆的方程.

查看答案和解析>>

同步练习册答案