【题目】已知抛物线,圆,点为抛物线上的动点, 为坐标原点,线段的中点的轨迹为曲线.
(1)求抛物线的方程;
(2)点是曲线上的点,过点作圆的两条切线,分别与轴交于两点.
求面积的最小值.
科目:高中数学 来源: 题型:
【题目】已知函数 是奇函数,且函数f(x)的图象过点(1,3).
(1)求实数a,b值;
(2)用定义证明函数f(x)在 上单调递增;
(3)求函数[1,+∞)上f(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= .
(1)在给定的直角坐标系内画出f(x)的图象;
(2)写出f(x)的单调递增区间和最值及取得最值时x的值(不需要证明);
(3)若方程f(x)﹣a=0,有三个实数根,求a的取 值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中所有正确的序号是 .
①函数f(x)=ax﹣1+3(a>0且a≠1)的图象一定过定点P(1,4);
②函数f(x﹣1)的定义域是(1,3),则函数f(x)的定义域为(2,4);
③已知f(x)=x5+ax3+bx﹣8,且f(﹣2)=8,则f(2)=﹣8;
④f(x)= 为奇函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=ax2+2x+c的对称轴为x=1,g(x)=x+ (x>0).
(1)求函数g(x)的最小值及取得最小值时x的值;
(2)试确定c的取值范围,使g(x)﹣f(x)=0至少有一个实根;
(3)若F(x)=﹣f(x)+4x+c,存在实数t,对任意x∈[1,m],使F(x+t)≤3x恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在(﹣1,1)上的偶函数,当x∈[0,1)时f(x)=lg ,
(1)求f(x)的解析式;
(2)探求f(x)的单调区间,并证明f(x)的单调性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“累积净化量”是空气净化器质量的一个重要衡量指标,它是指空气净化从开始使用到净化效率为50%时对颗粒物的累积净化量,以克表示,根据《空气净化器》国家标准,对空气净化器的累计净化量有如下等级划分:
累积净化量(克) | 12以上 | |||
等级 |
为了了解一批空气净化器(共5000台)的质量,随机抽取台机器作为样本进行估计,已知这台机器的累积净化量都分布在区间中,按照、、、、均匀分组,其中累积净化量在的所有数据有:4.5,4.6,5.2,5.3,5.7和5.9,并绘制了频率分布直方图,如图所示:
(1)求的值及频率分布直方图中的值;
(2)以样本估计总体,试估计这批空气净化器(共5000台)中等级为的空气净化器有多少台?
(3)从累积净化量在的样本中随机抽取2台,求恰好有1台等级为的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com