精英家教网 > 高中数学 > 题目详情
已知动圆C过点A(-2,0),且与圆M:(x-2)2+y2=64相内切
(1)求动圆C的圆心的轨迹方程;
(2)设直线l:y=kx+m(其中k,m∈Z)与(1)所求轨迹交于不同两点B,D,与双曲线交于不同两点E,F,问是否存在直线l,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.
【答案】分析:(1)由|AM|=4<R得点A(-2,0)在圆M内,设动圆C的半径为r,依题意得r=|CA|,且|CM|=R-r,|CM+|CA|=8>|AM|,由定义得圆心C的轨迹是中心在原点,以A,M两点为焦点,长轴长为8的椭圆,再根据a,b,c的关系解答即可.
(2)直线l:y=kx+m与交于不同两点B,D,即x1+x2=同理得x3+x4=又因为所以(x4-x2 )+(x3-x1)=0即x1+x2=x3+x4
,∴2km=0或又其中k,m∈Z即可求出k,m的数值.
解答:解:(1)圆M:(x-2)2+y2=64,圆心M的坐标为(2,0),半径R=8.
∵|AM|=4<R,∴点A(-2,0)在圆M内,
设动圆C的半径为r,圆心为C,依题意得r=|CA|,且|CM|=R-r,

∴圆心C的轨迹是中心在原点,以A,M两点为焦点,长轴长为8的椭圆,
设其方程为(a>b>0),则a=4,c=2,
∴b2=a2-c2=12,∴所求动圆C的圆心的轨迹方程为
(2)由消去y 化简整理得:(3+4k2)x2+8kmx+4m2-48=0,
设B(x1,y1),D(x2,y2),则x1+x2=
1=(8km)2-4(3+4k2) (4m2-48)>0.①
消去y 化简整理得:(3-k2)x2-2kmx-m2-12=0,
设E(x3,y3),F(x4,y4),则x3+x4=
2=(-2km)2+4(3-4k2) (m2+12)>0.②
,∴(x4-x2 )+(x3-x1)=0,即x1+x2=x3+x4
,∴2km=0或
解得k=0或m=0,
当k=0时,由①、②得
∵m∈Z,∴m的值为-3,-2,-1,0,1,2,3;
当m=0时,由①、②得
∵k∈Z,∴k=-1,0,1.
∴满足条件的直线共有9条.
点评:本题主要考查圆、椭圆、直线等基础知识和数学探究,考查数形结合、类与整的数学思想方法,以及推理论证能力、运算求解能力和创新意识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知动圆C过点A(-2,0),且与圆M:(x-2)2+y2=64相内切
(1)求动圆C的圆心的轨迹方程;
(2)设直线l:y=kx+m(其中k,m∈Z)与(1)所求轨迹交于不同两点B,D,与双曲线
x2
4 
-
y2
12
=1
交于不同两点E,F,问是否存在直线l,使得向量
DF
+
BE
=
0
,若存在,指出这样的直线有多少条?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年江西省高二上学期期末终结性数学文卷 题型:解答题

已知动圆C过点A(-2,0),且与圆M:(x-2)2+x2=64相内切

(1)求动圆C的圆心的轨迹方程;

(2)设直线l: y=kx+m(其中k,m∈Z)与(1)所求轨迹交于不同两点B,D,与双曲线交于不同两点E,F,问是否存在直线l,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2013届湖南省高二上学期第三次月考理科数学试卷 题型:解答题

已知动圆C过点A(-2,0),且与圆相内切。

(1)求动圆C的圆心的轨迹方程;

(2)设直线: y=kx+m(其中k,m∈Z)与(1)所求轨迹交于不同两点B,D,与双曲线交于不同两点E,F,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省深圳市高级中学高二(上)期中数学试卷(理科)(解析版) 题型:解答题

已知动圆C过点A(-2,0),且与圆M:(x-2)2+y2=64相内切
(1)求动圆C的圆心的轨迹方程;
(2)设直线l:y=kx+m(其中k,m∈Z)与(1)所求轨迹交于不同两点B,D,与双曲线交于不同两点E,F,问是否存在直线l,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.

查看答案和解析>>

同步练习册答案