精英家教网 > 高中数学 > 题目详情

【题目】如图可能是下列哪个函数的图象(

A.y=2x﹣x2﹣1
B.y=
C.y=(x2﹣2x)ex
D.y=

【答案】C
【解析】解:A中,∵y=2x﹣x2﹣1,当x趋向于﹣∞时,函数y=2x的值趋向于0,y=x2+1的值趋向+∞,
∴函数y=2x﹣x2﹣1的值小于0,∴A中的函数不满足条件;
B中,∵y=sinx是周期函数,∴函数y= 的图象是以x轴为中心的波浪线,
∴B中的函数不满足条件;
C中,∵函数y=x2﹣2x=(x﹣1)2﹣1,当x<0或x>2时,y>0,当0<x<2时,y<0;
且y=ex>0恒成立,
∴y=(x2﹣2x)ex的图象在x趋向于﹣∞时,y>0,0<x<2时,y<0,在x趋向于+∞时,y趋向于+∞;
∴C中的函数满足条件;
D中,y= 的定义域是(0,1)∪(1,+∞),且在x∈(0,1)时,lnx<0,
∴y= <0,∴D中函数不满足条件.
故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1时,探究函数的单调性

2若关于的不等式上恒成立的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,集合A={x|4x﹣92x+8<0},B={x| },C={x||x﹣2|<4},求A∪B,CUA∩C.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两动圆F1:(x+ 2+y2=r2和F2:(x﹣ 2+y2=(4﹣r)2(0<r<4),把它们的公共点的轨迹记为曲线C,若曲线C与y轴的正半轴的交点为M,且曲线C上的相异两点A,B满足: =0.
(1)求曲线C的方程;
(2)证明直线AB恒经过一定点,并求此定点的坐标;
(3)求△ABM面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》 第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:

月份

1

2

3

4

5

违章驾驶员人数

120

105

100

90

85

(1)请利用所给数据求违章人数y与月份之间的回归直线方程+

(2)预测该路口7月份的不“礼让斑马线”违章驾驶员人数;

(3)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”行为与驾龄的关系,得到如下2列联表:

不礼让斑马线

礼让斑马线

合计

驾龄不超过1年

22

8

30

驾龄1年以上

8

12

20

合计

30

20

50

能否据此判断有97.5的把握认为“礼让斑马线”行为与驾龄有关?

参考公式及数据:,.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 满足(1﹣q)Sn+qan=1,且q(q﹣1)≠0.
(1)求{an}的通项公式;
(2)若S3 , S9 , S6成等差数列,求证:a2 , a8 , a5成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在(0, )上的函数f(x),f'(x)为其导数,且 恒成立,则(
A. f( )> f(
B. f( )>f( )??
C.f(1)<2f( )sin1
D. f( )<f(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高三年级期末统考测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.

(Ⅰ)估计这次测试数学成绩的中位数;

(Ⅱ)假设在[90,100]段的学生的数学成绩都不相同,且都超过94分.若将频率视为概率,现用简单随机抽样的方法,从95,96,97,98,99,100这6个数中任意抽取3个数,有放回地抽取了3次,记这3次抽取中,恰好是三个学生的数学成绩的次数为,求的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1 , 直线C2的极坐标方程分别为ρ=4sinθ,ρcos( )=2
(1)求C1与C2交点的极坐标;
(2)设P为C1的圆心,Q为C1与C2交点连线的中点,已知直线PQ的参数方程为 (t∈R为参数),求a,b的值.

查看答案和解析>>

同步练习册答案