精英家教网 > 高中数学 > 题目详情

【题目】已知动点满足

Ⅰ)求动点的轨迹的方程

Ⅱ)设是轨迹上的两个动点,线段的中点在直线上,线段的中垂线与交于两点,是否存在点,使以为直径的圆经过点若存在,求出点坐标,若不存在,请说明理由.

【答案】;(.

【解析】分析:(1)利用椭圆定义即可得到动点的轨迹的方程。

(2)讨论直线存在和不存在,当斜率存在时,设存在点直线的斜率为,运用点差法可得,得到的直线方程为,然后联立直线与椭圆方程求解。

详解:(Ⅰ)

Ⅱ)当直线垂直于轴时,直线方程为

此时不合题意

当直线不垂直于轴时,设存在点,直线的斜率为

,此时,直线斜率为的直线方程为

联立消去,整理得:

所以

由题意,于是

因为在椭圆内符合条件

综上:存在两点符合条件,坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的单调区间;

(2)记的最大值为,若,求证:

(3)若,记集合中的最小元素为,设函数,求证:的极小值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的焦距为4,且过点

1)求椭圆的方程

2)设椭圆的上顶点为,右焦点为,直线与椭圆交于两点,问是否存在直线,使得的垂心,若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海水受日月的引力,在一定的时候发生涨落的现象叫潮汐.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节某天时间与水深(单位:米)的关系表:

时刻

0:00

3:00

6:00

9:00

12:00

15:00

18:00

21:00

24:00

水深

10.0

13.0

9.9

7.0

10.0

13.0

10.1

7.0

10.0

1)请用一个函数近似地描述这个港口的水深y与时间t的函数关系;

2)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上认为是安全的(船舶停靠时,船底只要不碰海底即可).某船吃水深度(船底离地面的距离)为6.5.

①如果该船是旅游船,1:00进港,希望在同一天内安全出港,它至多能在港内停留多长时间(忽略进出港所需时间)?

②如果该船是货船,在2:00开始卸货,吃水深度以每小时0.5米的速度减少,由于台风等天气原因该船必须在10:00之前离开该港口,为了使卸下的货物尽可能多而且能安全驶离该港口,那么该船在什么整点时刻必须停止卸货(忽略出港所需时间)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将标号为1,2,…,20的20张卡片放入下列表格中,一个格放入一张卡片,选出每列标号最小的卡片,将这些卡片中标号最大的数设为;选出每行标号最大的卡片,将这些卡片中标号最小的数设为

甲同学认为有可能比大,乙同学认为有可能相等,那么甲乙两位同学的说法中(

A. 甲对乙不对 B. 乙对甲不对 C. 甲乙都对 D. 甲乙都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

①一个命题的否命题为真,则它的逆命题一定为真;

②若pq为假命题,则p,q均为假命题;

③命题x2 -3x+2=0,则x=2”的否命题为x2 -3x+2=0,x≠2”;

a2+b2=0,则a, b全为0”的逆否命题是a, b全不为0,则a2+b2≠0”其中正确的命题序号是( )

A.B.①③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列命题的真假.

1)如果直线平行于直线,则平行于经过的任何一个平面;

2)如果一条直线不在平面内,则这条直线就与这个平面平行;

3)过直线外一点,可以作无数个平面与这条直线平行;

4)如果一条直线与一个平面平行,则它与该平面内的任何直线都平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了推广一种新饮料,某饮料生产企业开展了有奖促销活动:将6罐这种饮料装一箱,每箱中都放置2罐能够中奖的饮料.若从一箱中随机抽出2罐,能中奖的概率为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究性学习小组为了调查研究学生玩手机对学习的影响,现抽取了30名学生,得到数据如表:

玩手机

不玩手机

合计

学习成绩优秀

8

学习成绩不优秀

16

合计

30

已知在全部的30人中随机抽取1人,抽到不玩手机的概率为.

1)请将2×2列联表补充完整;

2)能否在犯错误的概率不超过0.005的前提下认为玩手机对学习有影响;

3)现从不玩手机,学习成绩优秀的8名学生中任意选取两人,对他们的学习情况进行全程跟踪,记甲、乙两名学生被抽到的人数为X,求X的分布列和数学期望.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案