精英家教网 > 高中数学 > 题目详情
14.若a,b,c∈R,则下列结论中正确的是(  )
A.若a>b,则a2>b2B.若a>b,则ac2>bc2C.若ac>bc,则a>bD.若a>b,则a-c>b-c

分析 利用不等式的性质即可判断出正误.

解答 解:A.取a=-1,b=-2,不成立;
B.取c=0,不成立;
C.取c<0,不成立;
D.利用不等式的性质可知:成立.
故选:D.

点评 本题考查了不等式的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设log23=t,s=log672,若用含t的式子表示s,则s=$\frac{3+2t}{1+t}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.信息时代,学生广泛使用手机,从某校学生中随机抽取200名,这200名学生中上课时间和不上时间都不使用手机的共有37人,这200名学生每天在校使用手机情况如下表:
分类
人数(人)
时间
一小时以上一小时以内不使用合计
上课时间2355m98
不上课时间176817102
合计40123n200
利用以上数据,将统计的频率视为概率.
(1)求上表中m、n的值;
(2)求该校学生上课时间使用手机的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某市进行一次高三教学质量抽样检测,考试后统计的所有考生的数学成绩服从正态分布.已知数学成绩平均分为90分,60分以下的人数占10%,则数学成绩在90分至120分之间的考生人数所占百分比约为40%.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)某校夏令营有2名男同学和2名女同学,现从这4名同学中随机选出2人参加知识竞赛(每人被选中的可能性相同).设M为事件“选出的2人中有1名男同学和1名女同学”,求事件M发表的概率.
(2)已知函数f(x)=ax+$\frac{4}{x}$,从区间(-2,2)内任取一个实数a,设事件A={函数y=f(x)-2在区间(0,+∞)上有两个不同的零点},求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,若sin2C-cos2C=$\frac{1}{2}$,则下列各式正确的是(  )
A.a+b=2cB.a+b≤2cC.a+b<2cD.a+b≥2c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,内角A,B,C的对边分别为a,b,c,△ABC的面积为S,且满足$\frac{cosB}{cosC}=-\frac{b}{2a+c}$.
(1)求B的大小;
(2)若a=2,$S=\sqrt{3}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}\frac{2}{x},x≥2\\{log_2}x,x<2\end{array}$,若函数y=f(x)-k有两个零点,则实数k的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知正项等比数列{an}满足a5+a4-a3-a2=8,则a6+a7的最小值为(  )
A.4B.16C.24D.32

查看答案和解析>>

同步练习册答案