直线AB过抛物线x2=2py(p>0)的焦点F,并与其相交于A、B两点,Q是线段AB的中点,M是抛物线的准线与y轴的交点,O是坐标原点.
(Ⅰ)求的取值范围;
(Ⅱ)过A、B两点分别作此抛物线的切线,两切线相交于N点.
求证:;
(Ⅲ)若p是不为1的正整数,当,△ABN的面积的取值范围为[5,20]时,求该抛物线的方程.
(Ⅰ)·的取值范围是.
(Ⅱ)证明见解析
(Ⅲ)抛物线的方程:x2=4y.
(Ⅰ)由条件得M(0,-),F(0,).设直线AB的方程为
y=kx+,A(,),B(,)
则,,Q(). …………………………2分
由得.
∴由韦达定理得+=2pk,·=- …………………………3分
从而有= +=k(+)+p=2pk÷p.
∴·的取值范围是. …………………………4分
(Ⅱ)抛物线方程可化为,求导得.
∴ =y .
∴切线NA的方程为:y-即.
切线NB的方程为: …………………………6分
由解得∴N()
从而可知N点Q点的横坐标相同但纵坐标不同.
∴NQ∥OF.即 …………………………7分
又由(Ⅰ)知+=2pk,·=-p
∴N(pk,-). …………………………8分
而M(0,-) ∴
又. ∴. …………………………9分
(Ⅲ)由.又根据(Ⅰ)知
∴4p=pk,而p>0,∴k=4,k=±2. …………………………10分
由于=(-pk,p),
∴
从而. …………………………11分
又||=,||=
∴.
而的取值范围是[5,20].
∴5≤5p2≤20,1≤p2≤4. …………………………13分
而p>0,∴1≤p≤2.
又p是不为1的正整数.
∴p=2.
故抛物线的方程:x2=4y. …………………………14分
科目:高中数学 来源: 题型:
MA |
MB |
MN |
OF |
NQ |
OF |
MA |
MB |
5 |
5 |
查看答案和解析>>
科目:高中数学 来源: 题型:
直线AB过抛物线x2=2py(p>0)的焦点F,并与其相交于A、B两点,Q是线段AB的中点,M是抛物线的准线与y轴的交点,O是坐标原点.
(Ⅰ)求的取值范围;
(Ⅱ)过A、B两点分别作此抛物线的切线,两切线相交于N点.
求证:;
(Ⅲ)若p是不为1的正整数,当,△ABN的面积的取值范围为[5,20]时,求该抛物线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)求证的取值范围;
(2)过A、B两点分别作此抛物线的切线,两切线相交于N点,
求证:;
(3)设直线AB与x轴、y轴的两个交点分别为K和L,当=4p2,△ABN的面积的取值范围限定为[]时,求动线段KL的轨迹所形成的平面区域的面积.
查看答案和解析>>
科目:高中数学 来源:2011年广东省高考数学第三轮复习精编模拟试卷08(理科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com