精英家教网 > 高中数学 > 题目详情
附加题:设函数,对于正整数列{an},其前n项和为Sn,且Sn=f(an),n∈N*
(1)求数列{an}的通项公式;
(2)是否存在等比数列{bn},使得a1b1+a2b2+…+anbn=2n+1(2n-1)+2对一切正整数n都成立?若存在,请求出数列{bn}的通项公式;若不存在,请说明理由.
【答案】分析:(1)由 Sn=f(an),得:,所以(an+1+an)•(an+1-an-2)=0,由an+1+an>0,知an+1=an+2,由此能求出数列{an}的通项公式.
(2)由,得:b1=2,b2=4.猜想:bn=2n,使a1b1+a2b2+…anbn=(2n-1)•2n+1+2对一切正整数都成立.然后再由错位相减法进行证明.
解答:解:(1)∵,Sn=f(an

则:

整理得:(an+1+an)•(an+1-an-2)=0,
∵an+1+an>0,
∴an+1-an-2=0,即an+1=an+2,
∴{an}是等差数列.

∴a1=3.
∴an=2n+1,n∈N*
(2)由
解得:b1=2,b2=4.
猜想:bn=2n,使a1b1+a2b2+…anbn=(2n-1)•2n+1+2对一切正整数都成立.
下面证明猜想成立:
即证3×2+5×22+7×23+…+(2n+1)•2n=(2n-1)•2n+1+2对一切正整数都成立,
令Tn=3×2+5×22+7×23+…+(2n+1)×2n
则2Tn=3×22+5×23+7×24+…+(2n+1)×2n+1
两式相减得:Tn=(2n+1)•2n+1-2•2n+1+2
=(2n-1)•2n+1+2,
故原命题获证.
点评:本题主要考查了数列与函数的综合,以及等差数列求通项和利用错位相消法求和,同时考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

附加题:
连续函数f(x)满足:对于任何x、y∈R,都有f(x+y)=f(x)?f(y)成立,且f(x)不是常数函数.
(Ⅰ)求证:对于任意x∈R,都有f(x)>0;
(Ⅱ)求证:对于任意x∈Q,都有f(x)=[f(1)]x
(Ⅲ)设f(1)=a,求证:对于任意x∈R,都有f(x)=ax

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东莞二模)附加题:设函数f(x)=
1
4
x2+
1
2
x-
3
4
,对于正整数列{an},其前n项和为Sn,且Sn=f(an),n∈N*
(1)求数列{an}的通项公式;
(2)是否存在等比数列{bn},使得a1b1+a2b2+…+anbn=2n+1(2n-1)+2对一切正整数n都成立?若存在,请求出数列{bn}的通项公式;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2008年广东省广州市执信中学高三联考数学试卷(文科)(解析版) 题型:解答题

附加题:设函数,对于正整数列{an},其前n项和为Sn,且Sn=f(an),n∈N*
(1)求数列{an}的通项公式;
(2)是否存在等比数列{bn},使得a1b1+a2b2+…+anbn=2n+1(2n-1)+2对一切正整数n都成立?若存在,请求出数列{bn}的通项公式;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012年广东省东莞市高考数学二模试卷(文科)(解析版) 题型:解答题

附加题:设函数,对于正整数列{an},其前n项和为Sn,且Sn=f(an),n∈N*
(1)求数列{an}的通项公式;
(2)是否存在等比数列{bn},使得a1b1+a2b2+…+anbn=2n+1(2n-1)+2对一切正整数n都成立?若存在,请求出数列{bn}的通项公式;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案