精英家教网 > 高中数学 > 题目详情

设矩阵M是把坐标平面上的点的纵坐标伸长到原来的2倍,横坐标保持不变的伸缩变换.

(Ⅰ)求矩阵M;

(Ⅱ)求矩阵M的特征值以及属于每个特征值的一个特征向量.

 

【答案】

(Ⅰ)由条件得矩阵(Ⅱ)是矩阵M属于特征值的一个特征向量,是矩阵M属于特征值 的一个特征向量.

【解析】(1)易求.

(2)由矩阵M,可知其特征多项式为,然后利用,可解出的特征值,有两个值,然后分别求其特征向量即可

(Ⅱ)因为矩阵的特征多项式为

,解得特征值为

设属于特征值的矩阵M的一个特征向量为,则,解得,取,得, 同理,对于特征值,解得,取,得, 6分

所以是矩阵M属于特征值的一个特征向量,是矩阵M属于特征值 的一个特征向量.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设矩阵M是把坐标平面上的点的横坐标伸长到原来的3倍,纵坐标伸长到原来的2倍的伸压变换矩阵.
(1)求逆矩阵M-1
(2)求椭圆
x2
9
+
y2
4
=1
在矩阵M-1作用下变换得到的新曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(选修4-2:矩阵与变换)
设矩阵M是把坐标平面上的点的横坐标伸长到原来的3倍,且纵坐标伸长到原来4倍的伸压变换,求椭圆
x2
9
+
y2
16
=1在M-1的作用下得到的新曲线的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省扬州中学高三(上)12月质量检测数学试卷(解析版) 题型:解答题

设矩阵M是把坐标平面上的点的横坐标伸长到原来的3倍,纵坐标伸长到原来的2倍的伸压变换矩阵.
(1)求逆矩阵M-1
(2)求椭圆在矩阵M-1作用下变换得到的新曲线的方程.

查看答案和解析>>

科目:高中数学 来源:2009年高考数学调研试卷(解析版) 题型:解答题

设矩阵M是把坐标平面上的点的横坐标伸长到原来的3倍,纵坐标伸长到原来的2倍的伸压变换矩阵.
(1)求逆矩阵M-1
(2)求椭圆在矩阵M-1作用下变换得到的新曲线的方程.

查看答案和解析>>

同步练习册答案