精英家教网 > 高中数学 > 题目详情
已知m、n表示直线,α、β、γ 表示平面,给出下列四个命题,其中真命题为    (    )
①α∩β=m,n≌αn⊥m则a⊥β ②a⊥β,a∩γ=m,β∩γ="n" 则n⊥m
③m⊥a,m⊥β,则α∥β   ④m⊥α,n⊥β,m⊥n,则α⊥β
A.①②B.③④C.②③D.②④
B
命题①中,可能只是相交不垂直,不正确;
命题②中,设,当时可得,从而有,不正确;
过直线作两个平面,分别于面相交于直线,则,又相交,相交,所以,命题③正确;
,则。当时,因为,所以。当时,存在使得。因为所以,从而也有。所以命题④正确。
综上可得,命题③④正确,故选B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

..(本小题满分14分)坐标法是解析几何中最基本的研究方法,坐标法是以坐标系为桥梁,把几何问题转化成代数问题,通过代数运算研究几何图形性质的方法.请利用坐标法解决以下问题:
(Ⅰ)在直角坐标平面内,已知,对任意,试判断的形状;
(Ⅱ)在平面内,已知中,的中点,,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,在直三棱柱
点D在
(1)证明:无论为任何正数,均有
(2)当为何值时,二面角.           

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图, 是边长为的正方形,平面与平面所成角为.
(Ⅰ) 求二面角的余弦值;
(Ⅱ) 设是线段上的一个动点,问当的值为多少时,可使得平面,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.设是两条不同的直线,是三个不同的平面,给出下列四个命题:
①若,则            ②若,则
③若,则 ④若,则
正确命题的个数是
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直三棱柱中,若,则异面直线
所成的角等于(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
用铁皮制作一个无盖的圆锥形容器,如图,已知该圆锥的母线与底面所在平面的夹角为,容器的高为.制作该容器需要多少面积的铁皮?该容器的容积又是多少?(衔接部分忽略不计,结果精确到)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线,平面满足,则的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件 D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图1,正四棱锥相邻两侧面形成的二面角为θ,则θ的取值范围是
A.B.C.D.

查看答案和解析>>

同步练习册答案