精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,a,b,c分别是角A,B,C的对边,且(a+b+c)(a+b﹣c)=3ab.
(Ⅰ)求角C的值;
(Ⅱ)若c=2,且△ABC为锐角三角形,求a+b的取值范围.

【答案】解:(Ⅰ)△ABC中,(a+b+c)(a+b﹣c)=3ab,

∴a2+b2﹣c2=ab,

由余弦定理得,cosC= =

又∵C∈(0,π),

∴C=

(Ⅱ)由c=2,C= ,根据正弦定理得,

= = = =

∴a+b= (sinA+sinB)

= [sinA+sin( ﹣A)]

=2 sinA+2cosA

=4sin(A+ );

又∵△ABC为锐角三角形,

解得 <A<

<A+

∴2 <4sin(A+ )≤4,

综上,a+b的取值范围是(2 ,4]


【解析】(Ⅰ)化简(a+b+c)(a+b﹣c)=3ab,利用余弦定理求得C的值;(Ⅱ)由正弦定理求出a+b的解析式,利用三角恒等变换化简,根据题意求出A的取值范围,从而求出a+b的取值范围.
【考点精析】根据题目的已知条件,利用余弦定理的定义的相关知识可以得到问题的答案,需要掌握余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= mcos2x+(m﹣2)sinx,其中1≤m≤2,若函数f(x)的最大值记为g(m),则g(m)的最小值为(
A.﹣
B.1
C.3﹣
D. ﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l的参数方程为 (其中t为参数),现以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=4cosθ.
(Ⅰ)写出直线l和曲线C的普通方程;
(Ⅱ)已知点P为曲线C上的动点,求P到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x= 时,函数f(x)取得最小值,则下列结论正确的是(
A.f(2)<f(﹣2)<f(0)
B.f(0)<f(2)<f(﹣2)
C.f(﹣2)<f(0)<f(2)
D.f(2)<f(0)<f(﹣2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数学归纳法证明1+2+3+…+n2= ,则当n=k+1时左端应在n=k的基础上加上(
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为 (0≤α<π,t为参数),曲线C的极坐标方程为ρ=
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;
(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.
(Ⅰ)证明:AC=AB1
(Ⅱ)若AC⊥AB1 , ∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某产品的广告费用x(单位:万元)与销售额y(单位:万元)具有线性关系关系,其统计数据如下表:

x

3

4

5

6

y

25

30

40

45

由上表可得线性回归方程 = x+ ,据此模型预报广告费用为8万元时的销售额是(
附: = = x.
A.59.5
B.52.5
C.56
D.63.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,平面的中点.

Ⅰ)求CEDB所成角的余弦值;

Ⅱ)设点在线段上,且直线与平面所成角的正弦值为,求线段的长度

查看答案和解析>>

同步练习册答案