精英家教网 > 高中数学 > 题目详情

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点P,Q,R分别是棱AB,CC1,D1A1的中点.

(1)求证: B1D^平面PQR;

(2)设二面角B1-PR-Q的大小为q ,求|cosq |.

 

 

 

【答案】

解:(1)在正方体中,以点A为原点,分别以

在直线为轴,轴,轴,建立如图所示的空间直角坐标系。

由于棱长为,所以 

所以,

因为        

所以  

即:

 且 ,所以,

(2)由(1)知,的一个法向量

是平面的一个法向量,因为

则由   得

 

  则 

即:平面的一个法向量

 

所以 

 

所以 

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、如图,已知正方体ABCD-A1B1C1D1的棱长为3,点E,F在线段AB上,点M在线段B1C1上,点N在线段C1D1上,且EF=1,D1N=x,AE=y,M是B1C1的中点,则四面体MNEF的体积(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点.
求:
(1)D1E与平面BC1D所成角的正弦值;
(2)二面角D-BC1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,E、F分别是D1C、AB的中点.
(I)求证:EF∥平面ADD1A1
(Ⅱ)求二面角D-EF-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点P,Q,R分别是棱AB,CC1,D1A1的中点.
(1)求证:B1D⊥平面PQR;
(2)设二面角B1-PR-Q的大小为θ,求|cosθ|.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝山区一模)如图,已知正方体ABCD-A1B1C1D1 的棱长为2,E,F分别是BB1,CD的中点.
(1)求三棱锥E-AA1F的体积;
(2)求异面直线EF与AB所成角的大小(结果用反三角函数值表示).

查看答案和解析>>

同步练习册答案