精英家教网 > 高中数学 > 题目详情
已知△ABC中,A、B、C分别为三个内角,a、b、c为所对边,2
2
(sin2A-sin2C)=(a-b)sinB,△ABC的外接圆半径为
2

(1)求角C;
(2)求△ABC面积S的最大值.
(1)利用正弦定理化简已知的等式得:2
2
(sin2A-sin2C)=2
2
sinB(a-b),
整理得:a2-c2=ab-b2,即a2+b2-c2=ab,
∵c2=a2+b2-2abcosC,即a2+b2-c2=2abcosC,
∴2abcosC=ab,即cosC=
1
2

则C=
π
3

(2)∵C=
π
3
,∴A+B=
3
,即B=
3
-A,
a
sinA
=
b
sinB
=2
2
,即a=2
2
sinA,b=2
2
sinB,
∴S△ABC=
1
2
absinC=
1
2
absin
π
3
=
1
2
×2
2
sinA×2
2
sinB×
3
2

=2
3
sinAsinB=2
3
sinAsin(
3
-A)=2
3
sinA(
3
2
cosA+
1
2
sinA)
=3sinAcosA+
3
sin2A=
3
2
sin2A+
3
2
(1-cos2A)
=
3
2
sin2A-
3
2
cos2A+
3
2
=
3
sin(2A-
π
6
)+
3
2

则当2A-
π
6
=
π
2
,即A=
π
3
时,S△ABCmax=
3
3
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC中,A=60°,a=
15
,c=4,那么sinC=
2
5
5
2
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,A(4,2),B(1,8),C(-1,8).
(1)求AB边上的高所在的直线方程;
(2)直线l∥AB,与AC,BC依次交于E,F,S△CEF:S△ABC=1:4.求l所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,a=2,b=1,C=60°,则边长c=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,a=2
3
,若
m
=(-cos
A
2
,sin
A
2
)
n
=(cos
A
2
,sin
A
2
)
满足
m
n
=
1
2
.(1)若△ABC的面积S=
3
,求b+c的值.(2)求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,A,B,C的对边分别为a,b,c,且
(AB)2
=
AB
AC
+
BA
BC
+
CA
CB

(Ⅰ)判断△ABC的形状,并求t=sinA+sinB的取值范围;
(Ⅱ)若不等式a2(b+c)+b2(c+a)+c2(a+b)≥kabc,对任意的满足题意的a,b,c都成立,求k的取值范围.

查看答案和解析>>

同步练习册答案