A. | 0 | B. | $\frac{π}{4}$-$\frac{1}{2}$ | C. | $\frac{π}{4}$ | D. | 1-$\frac{π}{4}$ |
分析 首先根据题意,做出图象,设O(0,0)、A(1,0)、B(1,1)、C(0,1),分析可得区域$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$表示的区域为以正方形OABC的内部及边界,易得其面积,x2+y2<1表示圆心在原点,半径为1的圆,由圆的面积公式可得其在正方形OABC的内部的面积$\frac{π}{4}$,由几何概型的计算公式,可得答案.
解答 解:根据题意,如图,设O(0,0)、A(1,0)、B(1,1)、C(0,1),
分析可得区域$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$表示的区域为以正方形OABC的内部及边界,其面积为1;
点P到原点距离小于1,即x2+y2<1表示圆心在原点,半径为1的圆的内部,在正方形OABC的内部的面积为$\frac{π}{4}$,
由几何概型的计算公式,可得点P(x,y)满足x2+y2<1的概率是$\frac{π}{4}$.
故选:C.
点评 本题考查几何概型的计算,解题的关键是将不等式(组)转化为平面直角坐标系下的图形的面积,进而由其公式计算.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{5}$ | B. | 2$\sqrt{5}$ | C. | 20 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充分必要条件 | D. | 即不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com