精英家教网 > 高中数学 > 题目详情
7.在区域$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$内任意取一点P(x,y),则点P到原点距离小于1的概率是(  )
A.0B.$\frac{π}{4}$-$\frac{1}{2}$C.$\frac{π}{4}$D.1-$\frac{π}{4}$

分析 首先根据题意,做出图象,设O(0,0)、A(1,0)、B(1,1)、C(0,1),分析可得区域$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$表示的区域为以正方形OABC的内部及边界,易得其面积,x2+y2<1表示圆心在原点,半径为1的圆,由圆的面积公式可得其在正方形OABC的内部的面积$\frac{π}{4}$,由几何概型的计算公式,可得答案.

解答 解:根据题意,如图,设O(0,0)、A(1,0)、B(1,1)、C(0,1),
分析可得区域$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$表示的区域为以正方形OABC的内部及边界,其面积为1;
点P到原点距离小于1,即x2+y2<1表示圆心在原点,半径为1的圆的内部,在正方形OABC的内部的面积为$\frac{π}{4}$,
由几何概型的计算公式,可得点P(x,y)满足x2+y2<1的概率是$\frac{π}{4}$.
故选:C.

点评 本题考查几何概型的计算,解题的关键是将不等式(组)转化为平面直角坐标系下的图形的面积,进而由其公式计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知共焦点的椭圆和双曲线的离心率分别为e1,e2,若椭圆的短轴长为双曲线虚轴长的2倍,则$\frac{1}{{e}_{1}}$+$\frac{1}{{e}_{2}}$的最大值为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的点P(1,$\frac{\sqrt{3}}{2}$)到其左、右焦点F1、F2的距离之和等于4.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若经过点F1且倾斜角为$\frac{π}{4}$的直线l与椭圆交于A、B两点,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,四棱柱ABCD-A1B1C1D1中,底面ABCD是正方形,E为A1A的中点.
求证:A1C∥平面EBD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图所示,正方体ABCD-A1B1C1D1的棱长为a,M、N分别是CD、BB1的中点,点P是棱B1C1上的动点,给出下列结论:
①异面直线C1M与AN所成的正弦值为$\frac{3}{5}$
②平面MC1P⊥平面AD1N
③点A1到平面MC1P的距离等于$\frac{3\sqrt{5}}{5}$a
其中正确的有①(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.阅读如图的程序框图,运行相应的程序,若输入x的值为2,则输出y的值为(  )
A.0.5B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.与双曲线$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{2}$=1有共同的渐近线,且经过点A($\sqrt{3}$,2$\sqrt{5}$)的双曲线的方程为$\frac{{y}^{2}}{18}-\frac{{x}^{2}}{27}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设复数z1=1-2i(i为虚数单位),复数z2的实部为2,且z1•z2是实数,则z2•$\overline{{z}_{2}}$=(  )
A.$\sqrt{5}$B.2$\sqrt{5}$C.20D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x)=$\left\{\begin{array}{l}{2x+1,}&{x≤0}\\{{x}^{2}-1,}&{x>0}\end{array}\right.$,则“f[f(a)]=1“是“a=1”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.即不充分也不必要条件

查看答案和解析>>

同步练习册答案