精英家教网 > 高中数学 > 题目详情

【题目】西北某省会城市计划新修一座城市运动公园,设计平面如图所示:其为五边形,其中三角形区域为球类活动场所;四边形为文艺活动场所,,为运动小道(不考虑宽度)千米.

(1)求小道的长度;

(2)求球类活动场所的面积最大值.

【答案】(1)(2)

【解析】

(1)连接BD,在△BCD中由余弦定理得BD的值,在Rt△BDE中,求解BE即可;

(2)设∠ABEα,在△ABE中,由正弦定理求解ABAE,表示SABE,然后求解最大值.

如解图所示,连接

(1)在三角形中,千米,

由余弦定理得:

所以

,∴

,∴

(千米)

∴小道的长度为千米

(2)如图所示,设,∵

在三角形由正弦定理可得

,∴

故当时,取得最大值,最大值为.

∴球类活动场所的面积最大值为平方千米.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着我国中医学的发展,药用昆虫的使用相应愈来愈多.每年春暖以后至寒冬前,是昆虫大量活动与繁殖季节,易于采集各种药用昆虫.已知一只药用昆虫的产卵数与一定范围内的温度有关于是科研人员在3月份的31天中随机挑选了5天进行研究,现收集了该种药用昆虫的5组观测数据如下表:

日期

2

7

15

22

30

温度

10

11

13

12

8

产卵数/

23

25

30

26

16

(1)从这5天中任选2天,记这两天药用昆虫的产卵分别为求事件均不小于25”的概率;

(2)科研人员确定的研究方案是:先从这五组数据中任选2组,用剩下的3组数据建立关于的线性回归方程再对被选取的2组数据进行检验.

(ⅰ)若选取的是32日与30日的两组数据,请根据37日、15日和22日这三天的数据,求出关于的线性回归方程

(ⅱ)若由线性回归方程得到的估计数据与选出的检验数据的误差均不超过2个,则认为得到的线性回归方程是可靠的,试问(ⅰ)中所得的线性回归方程是否可靠?

附:回归直线的斜率和截距的最小二乘估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列 都是单调递增数列,若将这两个数列的项按由小到大的顺序排成一列(相同的项视为一项),则得到一个新数列.

(1)设数列分别为等差、等比数列,若 ,求

(2)设的首项为1,各项为正整数, ,若新数列是等差数列,求数列 的前项和

(3)设是不小于2的正整数),,是否存在等差数列,使得对任意的,在之间数列的项数总是?若存在,请给出一个满足题意的等差数列;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正数数列{an}的前n项和为Sn,满足.

1)求数列{an}的通项公式;

2)设,若是递增数列,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从5名男生和4名女生中选出4人去参加座谈会,问:

(1)如果4人中男生和女生各选2人,有多少种选法?

(2)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法?

(3)如果4人中必须既有男生又有女生,有多少种选法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中,错误的是( )

A. 若命题,则命题

B. ”是“”的必要不充分条件

C. “若,则中至少有一个不小于”的逆否命题是真命题

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的离心率为,过左焦点且斜率为的直线交椭圆 两点,线段的中点为,直线交椭圆 两点.

I)求椭圆的方程.

II)求证:点在直线上.

III)是否存在实数,使得的面积是面积的倍?若存在,求出的值.若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在三角形ABC中,ABAC,∠BAC90°,边ABAC的长分别为方程x221x+40的两个实数根,若斜边BC上有异于端点的EF两点,且EF1,则的取值范围为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别是椭圆的左、右焦点.若是该椭圆上的一个动点的最大值为1.

(1)求椭圆的方程

(2)设直线与椭圆交于两点关于轴的对称点为(不重合)则直线轴是否交于一个定点若是请写出定点坐标并证明你的结论若不是请说明理由.

查看答案和解析>>

同步练习册答案