精英家教网 > 高中数学 > 题目详情

【题目】某市一批养殖专业户投资石金钱龟养殖业,行业协会为了了解市场行情,对石金钱龟幼苖销售价格进行调查。2017年12月随机抽取500户销售石金钱龟幼苖的平均价格,得到如下不完整的频率分布统计表:

(Ⅰ)完成统计表。

(Ⅱ)为了向石金钱龟养殖户提供更好的幼苖销售参考,协会决定2018年1月份从第1,3,5组中用分层抽样方法取出7户出售幼龟价格跟踪调查,求第1,3,5组1月份接受调查的户数。

(Ⅲ)在(Ⅱ)的前提下,协会决定从选出的7个养殖户中随机抽取3户总结销售经验.为了鼓励养殖户支持调查工作,协会决定:发给第1组被抽到的每户幸运奖奖金210元,第3组被抽到的每户幸运奖奖金70元,第5组被抽到的每户幸运奖奖金140元.记发出的幸运奖总奖金额为元,求的分布列和数学期望

【答案】(1)见解析(2) 1,3,5组接受调查的户数分别为1,4,2(3)见解析

【解析】试题分析】(I)乘以频率得到频数,由此填写好表格.(II)利用分层抽样各层的比例计算得每组抽取的人数.(III)的所有可能取值为210,280,350,420,490.利用古典概型的计算公式计算出概率,并求出期望值.

试题解析

(Ⅰ)

(Ⅱ)按分层抽样,可得第1组抽取的户数:,第3组抽取的户数:,第5组抽取的户数:.

因此,第1,3,5组接受调查的户数分别为1,4,2

(Ⅲ)依题意,的所有可能取值为210,280,350,420,490,则

所以的分布列为:

所以的数学期望为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知底面,且的中点,上,且.

1)求证:平面平面

2)求证:平面

3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f'(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)

(1)b关于a的函数关系式,并写出定义域;

(2)证明:b2>3a;

(3)f(x),f'(x)这两个函数的所有极值之和不小于-,a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下: 甲公司规定底薪80元,每销售一件产品提成1元; 乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8元.

(I)请将两家公司各一名推销员的日工资 (单位: 元) 分别表示为日销售件数的函数关系式;

(II)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图。若记甲公司该推销员的日工资为,乙公司该推销员的日工资为 (单位: 元),将该频率视为概率,请回答下面问题:

某大学毕业生拟到两家公司中的一家应聘推销员工作,如果仅从日均收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.

【答案】(I)见解析; (Ⅱ)见解析.

【解析】分析:(I)依题意可得甲公司一名推销员的工资与销售件数的关系是一次函数的关系式,而乙公司是分段函数的关系式,由此解得;(Ⅱ)分别根据条形图求得甲、乙公司一名推销员的日工资的分布列,从而可分别求得数学期望,进而可得结论.

详解:(I)由题意得,甲公司一名推销员的日工资 (单位:) 与销售件数的关系式为: .

乙公司一名推销员的日工资 (单位: ) 与销售件数的关系式为:

()记甲公司一名推销员的日工资为 (单位: ),由条形图可得的分布列为

122

124

126

128

130

0.2

0.4

0.2

0.1

0.1

记乙公司一名推销员的日工资为 (单位: ),由条形图可得的分布列为

120

128

144

160

0.2

0.3

0.4

0.1

∴仅从日均收入的角度考虑,我会选择去乙公司.

点睛:求解离散型随机变量的数学期望的一般步骤为:

第一步是判断取值,即判断随机变量的所有可能取值,以及取每个值所表示的意义;

第二步是探求概率,即利用排列组合,枚举法,概率公式,求出随机变量取每个值时的概率;

第三步是写分布列,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;

第四步是求期望值,一般利用离散型随机变量的数学期望的定义求期望的值

型】解答
束】
19

【题目】如图,在四棱锥中,底面为菱形, 平面 分别是 的中点.

(1)证明:

(2)设为线段上的动点,若线段长的最小值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

如图,已知四棱锥的底面为菱形,且 .

I)求证:平面 平面

II)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为探索课堂教学改革,江门某中学数学老师用传统教学和导学案两种教学方式,在甲、乙两个平行班进行教学实验。为了解教学效果,期末考试后,分别从两个班级各随机抽取20名学生的成绩进行统计,得到如下茎叶图。记成绩不低于70分者为成绩优良”。

Ⅰ)请大致判断哪种教学方式的教学效果更佳,并说明理由;

Ⅱ)构造一个教学方式与成绩优良列联表,并判断能否在犯错误的概率不超过0.05的前提下认为成绩优良与教学方式有关”?

(附:,其中是样本容量)

独立性检验临界值表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线1(a0b0)的右焦点为F(c,0)

(1)若双曲线的一条渐近线方程为yxc2,求双曲线的方程;

(2)以原点O为圆心,c为半径作圆,该圆与双曲线在第一象限的交点为A,过A作圆的切线,斜率为-,求双曲线的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对车辆限行的态度,随机抽查了人,将调查情况进行整理后制成下表:

年龄(岁)

频数

赞成人数

)完成被调查人员的频率分布直方图.

)若从年龄在的被调查者中各随机选取人进行追踪调查,求恰有人不赞成的概率.

)在在条件下,再记选中的人中不赞成车辆限行的人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校推广新课改在两个程度接近的班进行试验一班为新课改班级二班为非课改班级经过一个学期的教学后对期末考试进行分析评价规定:总分超过550(或等于550)为优秀550以下为非优秀得到以下列联表:

优秀

非优秀

合计

一班

35

13

二班

25

合计

90

(1)请完成上面的列联表;

(2)根据列联表的数据能否在犯错误的概率不超过0.005的前提下认为推广新课改与数学成绩有关系?

参考数据:

P(K2k)

0.15

0.10

0.05

0.025

0.010

0.005

k

2.072

2.706

3.841

5.024

6.635

7.879

k2

查看答案和解析>>

同步练习册答案