精英家教网 > 高中数学 > 题目详情
4.方程$\left\{{\begin{array}{l}x=-\frac{{2\sqrt{5}}}{5}t+2cosθ\\ y=\frac{{\sqrt{5}}}{5}t+\sqrt{3}sinθ\end{array}}$
(1)当t=0时,θ为参数,此时方程表示曲线C1请把C1的参数方程化为普通方程;
(2)当θ=$\frac{π}{3}$时,t为参数,此时方程表示曲线C2请把C2的参数方程化为普通方程;
(3)在(1)(2)的条件下,若P为曲线C1上的动点,求点P到曲线C2距离的最大值.

分析 (1)(2)消去参数,可化参数方程为普通方程;
(3)由(1)(2)可知P到C2的距离为$d=\frac{{|2cosθ+2\sqrt{3}sinθ-4|}}{{\sqrt{5}}}=\frac{{|4sin(θ+\frac{π}{6})-4|}}{{\sqrt{5}}}$,即可得出结论.

解答 解:(1)当t=0时,原方程即为$\left\{{\begin{array}{l}x=2cosθ\\ y=\sqrt{3}sinθ\end{array}}\right.$,消参得${C_1}:\frac{x^2}{4}+\frac{y^2}{3}=1$.…(3分)
(2)当$θ=\frac{π}{3}$.原方程即为$\left\{{\begin{array}{l}x=-\frac{{2\sqrt{5}}}{5}t+1\\ y=\frac{{\sqrt{5}}}{5}t+\frac{3}{2}\end{array}}\right.$,消参得C2:x+2y-4=0…(6分)
(3)由(1)(2)可知P到C2的距离为$d=\frac{{|2cosθ+2\sqrt{3}sinθ-4|}}{{\sqrt{5}}}=\frac{{|4sin(θ+\frac{π}{6})-4|}}{{\sqrt{5}}}$
当$sin(θ+\frac{π}{6})=-1$时,${d_{max}}=\frac{{8\sqrt{5}}}{5}$…(10分)

点评 本题考查参数方程化为普通方程,考查点到直线距离公式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=lnx,g(x)=x+$\frac{a}{x}$,a∈R.
(1)设F(x)=f(x)+g(x)-x,若F(x)在[1,e]上的最小值是$\frac{3}{2}$,求实数a的值;
(2)若x≥1时,f(x)≤g(x)恒成立,求实数a的取值范围;
(3)当n≥2时且n∈N*时,求证:$\frac{ln2}{3}$×$\frac{ln3}{4}$×$\frac{ln4}{5}$×…×$\frac{lnn}{n+1}$<$\frac{1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知Sn为数列{an}的前n项和满足an>0,${a_n}^2+2{a_n}=4{S_n}+3$.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数y=2x-3x+4的零点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.一个建筑物CD垂直于水平面,一个人在建筑物的正西A点,测得建筑物顶端的仰角是α,这个人再从A点向南走到B点,再测得建筑物顶端仰角是β,设A、B两地距离为a,求建筑物的高h的值(A,B,C三点在同一水平面内).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若$sinα=-\frac{1}{3}$,则cos(π-2α)=(  )
A.$-\frac{{4\sqrt{2}}}{9}$B.$\frac{{4\sqrt{2}}}{9}$C.$-\frac{7}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知点C的坐标为(1,0),A,B是抛物线y2=x上不同于原点O的相异的两个动点,且$\overrightarrow{OA}•\overrightarrow{OB}=0$.
(1)求证:点A,C,B共线;
(2)若$\overrightarrow{AQ}=λ\overrightarrow{QB}({λ∈R})$,当$\overrightarrow{OQ}•\overrightarrow{AB}=0$时,求动点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在一次联考后,某校对甲、乙两个理科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀,统计成绩后,得到如下的2×2列联表,且已知在甲、乙两个理科班全部110人中随机抽取1人,成绩为优秀的概率为$\frac{3}{11}$.
优秀非优秀合计
甲班10
乙班30
合计110
(1)请完成右面的列联表,根据列联表的数据,能否有99%的把握认为成绩与班级有关系?(2)在甲、乙两个理科班优秀的学生中随机抽取两名学生,用ξ表示抽得甲班的学生人数,求ξ的分布列.
参考公式和数据:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+c})({b+d})({a+b})({c+d})}}$
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设全集为R,集合M={x|(x+a)(x-1)≤0}(a>0),集合N={x|4x2-4x-3<0}.
(1)若M∪N={x|-2≤x<$\frac{3}{2}$},求实数a的值;
(2)若N∪(∁RM)=R,求实数a的取值范围.

查看答案和解析>>

同步练习册答案