精英家教网 > 高中数学 > 题目详情
(2011•朝阳区二模)在长方形AA1B1B中,AB=2A1=4,C,C1分别是AB,A1B1的中点(如图).将此长方形沿CC1对折,使平面AA1C1C⊥平面CC1B1B(如图),已知D,E分别是A1B1,CC1的中点.
(Ⅰ)求证:C1D∥平面A1BE;
(Ⅱ)求证:平面A1BE⊥平面AA1B1B;
(Ⅲ)求三棱锥C1-A1BE的体积.
分析:(1)取A1B的中点F,连接DF,EF,由三角形中位定理,结合E是CC1的中点,可证得四边形C1EFD是平行四边形,进而C1D∥EF,由线面平行的判定定理得到C1D∥平面A1BE;
(Ⅱ)由CC1⊥A1C1,CC1⊥B1C1,可由线面垂直的判定定理得到CC1⊥平面A1C1B1.进而由线面垂直的第二判定定理得到BB1⊥平面A1C1B1,则BB1⊥C1D,由等腰三角形三线合一可得C1D⊥A1B1,结合线面垂直的判定定理得到C1D⊥平面AA1B1B,结合(I)中EF∥C1D,可得EF⊥平面AA1B1B,最后由面面垂直的判定定理得到平面A1BE⊥平面AA1B1B
(Ⅲ)由已知可证得BC⊥平面A1EC1,即BC为三棱锥C1-A1BE的以△A1EC1为底面时的高,求出高及底面面积,代入棱锥体积公式,可得答案.
解答:证明:(Ⅰ)取A1B的中点F,连接DF,EF.(1分)
因为D,F分别是A1B1,A1B的中点
所以DF是△A1BB1的中位线.(2分)
所以DF∥BB1∥CC1,且DF=
1
2
BB1=
1
2
CC1

又因为E是CC1的中点,
所以C1E=
1
2
CC1

所以DF∥C1E,且DF=C1E.
所以四边形C1EFD是平行四边形.(3分)
所以C1D∥EF.
又EF?平面A1BE,C1D?平面A1BE,(4分)
所以C1D∥平面A1BE.(5分)
(Ⅱ)因为CC1⊥A1C1,CC1⊥B1C1,且A1C1∩B1C1=C1
所以CC1⊥平面A1C1B1
因为BB1∥CC1,所以BB1⊥平面A1C1B1
因为C1D?平面A1C1B1,所以BB1⊥C1D.(6分)
又因为A1C1=C1B1,且D是A1B1的中点,所以C1D⊥A1B1.(7分)
因为A1B1∩BB1=B1,所以C1D⊥平面AA1B1B.(8分)
由(Ⅰ)知EF∥C1D,
所以EF⊥平面AA1B1B.
又因为EF?平面A1BE,
所以平面A1BE⊥平面AA1B1B.(10分)
解:(Ⅲ)由已知,长方形AA1B1B沿CC1对折后AC=BC=2,AB=2
2

所以AB2=AC2+BC2
所以BC⊥AC,且BC⊥CC1,AC∩CC1=C.
所以BC⊥平面AA1C1C.
即BC⊥平面A1EC1.(11分)
所以VC1-A1BE=VB-A1EC1=
1
3
SA1EC1•BC
.(12分)
其中SA1EC1=
1
2
A1C1C1E=
1
2
•2•1=1

所以VC1-A1BE=VB-A1EC_=
1
3
SA1EC1•BC=
1
3
•1•2=
2
3
.(13分)
点评:本题考查的知识点是平面与平面垂直的判定,棱锥的体积,直线与平面平行的判定,其中熟练掌握空间线面关系的定义,判定,性质及相互转化是解答此类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•朝阳区二模)已知全集U=R,集合A={x|2x>1},B={ x|
1
x-1
>0 }
,则A∩(CUB)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区二模)设函数f(x)=lnx+(x-a)2,a∈R.
(Ⅰ)若a=0,求函数f(x)在[1,e]上的最小值;
(Ⅱ)若函数f(x)在[
12
,2]
上存在单调递增区间,试求实数a的取值范围;
(Ⅲ)求函数f(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区二模)已知cosα=
3
5
,0<α<π,则tan(α+
π
4
)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区二模)已知函数f(x)=2sinx•sin(
π
2
+x)-2sin2x+1
(x∈R).
(Ⅰ)求函数f(x)的最小正周期及函数f(x)的单调递增区间;
(Ⅱ)若f(
x0
2
)=
2
3
x0∈(-
π
4
π
4
)
,求cos2x0的值.

查看答案和解析>>

同步练习册答案