精英家教网 > 高中数学 > 题目详情
甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为
3
5
和P,且甲、乙两人各射击一次得分之和为2的概率为
9
20
.假设甲、乙两人射击互不影响,则P值为(  )
分析:由题意知甲、乙两人射击互不影响,则本题是一个相互独立事件同时发生的概率,根据题意可设“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B,由相互独立事件的概率公式可得,可得关于p的方程,解方程即可得答案.
解答:解:设“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B,
则“甲射击一次,未击中目标”为事件
.
A
,“乙射击一次,未击中目标”为事件
.
B

则P(A)=
3
5
,P(
.
A
)=1-
3
5
=
2
5
,P(B)=P,P(
.
B
)=1-P,
依题意得:
3
5
×(1-p)+
2
5
×p=
9
20

解可得,p=
3
4

故选C.
点评:本题考查相互独立事件的概率计算,关键是根据相互独立事件概率得到关于p的方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲、乙两名同学参加一项射击游戏,两人约定,其中任何一人每射击一次,击中目标得2分,未击中目标得0分.若甲、乙两名同学射击的命中率分别为
3
5
和p,且甲、乙两人各射击一次所得分数之和为2的概率为
9
20
,假设甲、乙两人射击互不影响
(1)求p的值;
(2)记甲、乙两人各射击一次所得分数之和为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为
3
5
和P,且甲、乙两人各射击一次得分之和为2的概率为
9
20
.假设甲、乙两人射击互不影响,则P值为(  )
A.
3
5
B.
4
5
C.
3
4
D.
1
4

查看答案和解析>>

科目:高中数学 来源:2008-2009学年广东省深圳市第二高级中学高二(下)期末数学试卷(理科)(解析版) 题型:解答题

甲、乙两名同学参加一项射击游戏,两人约定,其中任何一人每射击一次,击中目标得2分,未击中目标得0分.若甲、乙两名同学射击的命中率分别为和p,且甲、乙两人各射击一次所得分数之和为2的概率为,假设甲、乙两人射击互不影响
(1)求p的值;
(2)记甲、乙两人各射击一次所得分数之和为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年广东省清远市英德一中高三(上)期末数学复习试卷3(理科)(解析版) 题型:解答题

甲、乙两名同学参加一项射击游戏,两人约定,其中任何一人每射击一次,击中目标得2分,未击中目标得0分.若甲、乙两名同学射击的命中率分别为和p,且甲、乙两人各射击一次所得分数之和为2的概率为,假设甲、乙两人射击互不影响
(1)求p的值;
(2)记甲、乙两人各射击一次所得分数之和为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案