精英家教网 > 高中数学 > 题目详情
设f(x)=
1+x
1-x
,又记f1(x)=f(x),fk+1(x)=f(fk(x)),k=1,2,…则f2011(x)=(  )
分析:根据函数迭代式,确定函数解析式以4为周期,成周期出现,由此可得结论.
解答:解:f1(x)=
1+x
1-x
,f2(x)=f(f1(x))=-
1
x
,f3(x)=f(f2(x))=
1-
1
x
1+
1
x
=
x-1
x+1

f4(x)=f(f3(x))=
1+
x-1
x+1
1-
x-1
x+1
=x,f5(x)=f(f4(x))=
1+x
1-x

∴函数解析式以4为周期,成周期出现
∵f2011(x)=f502×4+3(x)=f3(x)=
x-1
x+1

故选D.
点评:本题考查函数迭代,解题的关键是确定函数解析式以4为周期,成周期出现,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设 f(x)=
1+x
1-x
,又记f1(x)=f(x),fk+1(x)=f(fk(x)),k=1,2,…,则f2009(x)=(  )
A、
1+x
1-x
B、
x-1
x+1
C、x
D、-
1
x

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
1+x
1-x
,又记f1(x)=f(x),fk+1(x)=f(fk(x)),k=1,2,…,则f2009(x)=(  )
A、-
1
x
B、x
C、
x-1
x+1
D、
1+x
1-x

查看答案和解析>>

科目:高中数学 来源: 题型:

下列叙述
①对于函数f(x)=-x2+1,当x1≠x2时,都有
f(x1)+f(x2)
2
<f(
x1+x2
2
);
②设f(x)=
1+x2
1-x2
则f(2)+f(3)+…+f(2012)+f(
1
2
)+f(
1
3
)+…+f(
1
2012
)=0;
③定义域是R的函数y=f(x)在[a,b)上递增,且在[b,c]上也递增,则f(x)在[a,c]上递增;
④设满足3x=5y的点P为(x,y),则点P(x,y)满足xy≥0.
其中正确的所有番号是:
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3-x2+ax
(a为常数)
(1)若f(x)在区间[-1,2]上单调递减,求a的取值范围;
(2)若f(x)与直线y=-9相切:
(ⅰ)求a的值;
(ⅱ)设f(x)在x1,x2(x1<x2)处取得极值,记点M (x1,f(x1)),N(x2,f(x2)),P(m,f(m)),x1<m<x2,若对任意的m∈(t,x2),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论.

查看答案和解析>>

同步练习册答案