精英家教网 > 高中数学 > 题目详情
14.已知a,b,c均为正数,且分别为函数$f(x)={2^x}-{log_{\frac{1}{2}}}x$,$g(x)={(\frac{1}{2})^x}-{log_{\frac{1}{2}}}x$,$h(x)={(\frac{1}{2})^x}-{log_{\frac{2}{3}}}x$的零点,则(  )
A.a<b<cB.c<b<aC.c<a<bD.a<c<b

分析 在同一坐标系中画出相应函数的图象,数形结合可得答案.

解答 解:∵a,b,c均为正数,且分别为函数$f(x)={2^x}-{log_{\frac{1}{2}}}x$,$g(x)={(\frac{1}{2})^x}-{log_{\frac{1}{2}}}x$,$h(x)={(\frac{1}{2})^x}-{log_{\frac{2}{3}}}x$的零点,
∴a,b,c分别为函数$y={2}^{x}与y=lo{g}_{\frac{1}{2}}x$,函数$y={(\frac{1}{2})}^{x}与y=lo{g}_{\frac{1}{2}}x$,函数$y={(\frac{1}{2})}^{x}与y=lo{g}_{\frac{2}{3}}x$交点的横坐标,
在同一坐标系中画出相应函数的图象,如下图所示:

由图可得:a<b<c,
故选:A

点评 本题考查的知识点是函数的零点,数列结合思想,画出满足条件的图象是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知复数z=$\frac{(1-i)^{2}}{1+i}$,则z=-1-i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若F1,F2是双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$的两个焦点,P是双曲线上的一点,且|PF1|•|PF2|=64,则∠F1PF2=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在底面边长为1,侧棱长为2的正四棱柱ABCDA1B1C1D1中,P是侧棱CC1上的一点,CP=1,求异面直线AP与BD1所成角的余弦.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知集合A={x|x>5},集合B={x|x>a},若命题“x∈A”是命题“x∈B”的充分不必要条件,则实数a的取值的集合是{ a|a<5 }.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lg(10+x)+lg(10-x).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(x)=ax2+2x-3,g(x)=x2+(1-a)x-a,M={x|f(x)≤0},P={x|g(x)≥0}.若M∩P=R,则实数a的取值集合为{-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=cos(2x-$\frac{3π}{2}$)的图象关于x=$\frac{3π}{4}$+$\frac{1}{2}$kπ,k∈Z对称.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知点A在直线x+2y-1=0,点B在直线x+2y+3=0上,线段AB的中点为P(x0,y0),且满足y0>x0+2,则$\frac{{y}_{0}}{{x}_{0}}$的取值范围是(-$\frac{1}{2}$,-$\frac{1}{5}$).

查看答案和解析>>

同步练习册答案