精英家教网 > 高中数学 > 题目详情

【题目】某四棱锥的三视图如图所示,该四棱锥外接球的体积为( )

A. B. C. D.

【答案】C

【解析】该四棱锥的底面是正方形,其中一条侧棱与底面垂直,所以该四棱锥的外接球就是它所在的长方体的外接球,半径,所以体积,故选D.

(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.

(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.

(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某单位附近只有甲、乙两个临时停车场,它们各有个车位,为了方便市民停车,某互联网停车公司对这两个停车场,在某些固定时刻的剩余停车位进行记录,如下表:

时间

停车场

甲停车场

乙停车场

如果表中某一时刻剩余停车位数低于该停车场总车位数的,那么当车主驱车抵达单位附近时,该公司将会向车主发出停车场饱和警报.

(1)假设某车主在以上六个时刻抵达单位附近的可能性相同,求他收到甲停车场饱和警报的概率;

(2)从这六个时刻中任选一个时刻,求甲停车场比乙停车场剩余车位数少的概率;

(3)当乙停车场发出饱和警报时,求甲停车场也发出饱和警报的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)当时, 求函数在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(Ⅰ)抛物线的顶点在原点,坐标轴为对称轴,并经过点,求此抛物线的方程.

(Ⅱ)已知圆: ),把圆上的各点纵坐标不变,横坐标伸长到原来的倍得一椭圆.求椭圆方程,并证明椭圆离心率是与无关的常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 ,函数 .

(Ⅰ)若有公共点,且在点处切线相同,求该切线方程;

(Ⅱ)若函数有极值但无零点,求实数的取值范围;

(Ⅲ)当 时,求在区间的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱中, ,侧面底面 的中点, .

(Ⅰ)求证:

(Ⅱ)求直线与平面所成线面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 ,向量 =(cosα,sinα),
(1)证明:向量 垂直;
(2)当| |=| |时,求角α.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】斐波那契数列满足: .若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前项所占的格子的面积之和为,每段螺旋线与其所在的正方形所围成的扇形面积为,则下列结论错误的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】矩形纸片ABCD中,AB10cm,BC8cm.将其按图(1)的方法分割,并按图(2)的方法焊接成扇形;按图(3)的方法将宽BC 等分,把图(3)中的每个小矩形按图(1)分割并把4个小扇形焊接成一个大扇形;按图(4)的方法将宽BC 等分,把图(4)中的每个小矩形按图(1)分割并把6个小扇形焊接成一个大扇形;……;依次将宽BC 等分,每个小矩形按图(1)分割并把个小扇形焊接成一个大扇形.当n时,最后拼成的大扇形的圆心角的大小为 ( )

A. 小于 B. 等于 C. 大于 D. 大于

查看答案和解析>>

同步练习册答案