精英家教网 > 高中数学 > 题目详情
(2013•临沂二模)已知点(1,2)是函数f(x)=ax(a>0且a≠1)的图象上一点,数列{an}的前n项和Sn=f(n)-1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)将数列{an}前2013项中的第3项,第6项,…,第3k项删去,求数列{an}前2013项中剩余项的和.
分析:(Ⅰ)把点(1,2)代入函数f(x)=ax,可求得得a=2,从而可得Sn=2n-1,于是可求得a1,当n≥2时,由an=Sn-Sn-1可求得an,验证后,能合则合,不合则分,即可;
(Ⅱ)由(Ⅰ)可知数列{an}为等比数列,利用等比数列的求和公式求得数列{an}前2013项和,再减去第3项,第6项,…,第2013项的和即可.
解答:解:(Ⅰ)把点(1,2)代入函数f(x)=ax,得a=2.…(1分)
∴Sn=f(n)-1=2n-1,…(2分)
当n=1时,a1=S1=21-1=1;…(3分)
当n≥2时,an=Sn-Sn-1=(2n-1)-(2n-1-1)=2n-1…(5分)
经验证可知n=1时,也适合上式,
∴an=2n-1.…(6分)
(Ⅱ)由(Ⅰ)知数列{an}为等比数列,公比为2,故其第3项,第6项,…,第2013项也为等比数列,首项a3=23-1=4,公比q=23,a2013=22012为其第671项…(8分)
∴此数列的和为
4(1-8671)
1-8
=
4(22013-1)
7
…(10分)
又数列{an}的前2013项和为S2013=
1×(1-22013)
1-2
=22013-1,…(12分)
∴所求剩余项的和为(22013-1)-
4(22013-1)
7
=
3(22013-1)
7
…(13分)
点评:本题考查利用数列的递推关系求其通项,考查等比数列的求和,考查先总后分的解决方法,考查转化思想与解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•临沂二模)已知函数f(x)=elnx,g(x)=lnx-x-1,h(x)=
1
2
x2

(Ⅰ)求函数g(x)的极大值.
(Ⅱ)求证:存在x0∈(1,+∞),使g(x0)=g(
1
2
)

(Ⅲ)对于函数f(x)与h(x)定义域内的任意实数x,若存在常数k,b,使得f(x)≤kx+b和h(x)≥kx+b都成立,则称直线y=kx+b为函数f(x)与h(x)的分界线.试探究函数f(x)与h(x)是否存在“分界线”?若存在,请给予证明,并求出k,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•临沂二模)函数y=esinx(-π≤x≤π)的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•临沂二模)已知定义在R上的函数y=f(x)对任意的x都满足f(x+1)=-f(x),当-1≤x<1时,f(x)=x3,若函数g(x)=f(x)-loga|x|至少6个零点,则a取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•临沂二模)已知x∈R,ω>0,
u
=(1,sin(ωx+
π
2
)),
v
=(cos2ωx,
3
sinωx)函数f(x)=
u
v
-
1
2
的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)在区间[0,
π
2
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•临沂二模)某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是(  )

查看答案和解析>>

同步练习册答案