精英家教网 > 高中数学 > 题目详情

【题目】对某电子元件进行寿命追踪调查,所得情况如下频率分布直方图.

1)图中纵坐标处刻度不清,根据图表所提供的数据还原

2)根据图表的数据按分层抽样,抽取个元件,寿命为之间的应抽取几个;

3)从(2)中抽出的寿命落在之间的元件中任取个元件,求事件恰好有一个寿命为,一个寿命为的概率.

【答案】1;(2)应抽取个;(3.

【解析】

试题(1)根据题意:,即可求得的值;(2)设在寿命为之间的应抽取个,根据分层抽样有:,即可求解寿命为之间的应抽取几个;(3)记恰好有一个寿命为,一个寿命为为事件,由(2)知寿命落在之间的元件有个分别记,落在之间的元件有个分别记为:,从中任取个球,即可利用古典概型求解概率.

试题解析:(1)根据题意:

解得

2)设在寿命为之间的应抽取个,根据分层抽样有:

解得:所以应在寿命为之间的应抽取

3)记恰好有一个寿命为,一个寿命为为事件

由(2)知寿命落在之间的元件有个分别记,落在之间的元件有个分别记为:,从中任取个球,有如下基本事件:

,共有个基本事件

事件恰好有一个寿命为,一个寿命为有:

共有个基本事件

答:事件恰好有一个寿命为,另一个寿命为的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在多面体中,且平面平面.

(1)设点为线段的中点,试证明平面

(2)若直线与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知梯形中,,四边形为矩形,,平面平面

Ⅰ)求证:平面

Ⅱ)求平面与平面所成锐二面角的余弦值;

Ⅲ)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥的所有顶点都在球的球面上,平面,若球的表面积为,则三棱锥的侧面积的最大值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角ABC对应的边分别是abc,已知cos2A﹣3cosB+C=1

1)求角A的大小;

2)若△ABC的面积S=5b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中放有大小和形状相同而颜色互不相同的小球若干个, 其中标号为0的小球1个, 标号为1的小球1个, 标号为2的小球2个, 从袋子中不放回地随机抽取2个小球, 记第一次取出的小球标号为,第二次取出的小球标号为.

(1) 记事件表示“”, 求事件的概率

(2) 在区间内任取2个实数, 记的最大值为,求事件”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象向左平移个单位长度,再向上平移1个单位长度,得到函数的图象,则函数具有性质__________.(填入所有正确性质的序号)

①最大值为,图象关于直线对称;

②图象关于轴对称;

③最小正周期为

④图象关于点对称;

⑤在上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,满足:M的中点.

1)若,求向量与向量的夹角的余弦值;

2)若O是线段上任意一点,且,求的最小值:

3)若点P内一点,且,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若满足,则称为函数的一阶不动点,若满足,则称为函数的二阶不动点,若满足,且,则称为函数的二阶周期点.

1)设.

①当时,求函数的二阶不动点,并判断它是否是函数数的二阶周期点;

②已知函数存在二阶周期点,求k的值;

2)若对任意实数b,函数都存在二阶周期点,求实数c的取值范围.

查看答案和解析>>

同步练习册答案