精英家教网 > 高中数学 > 题目详情
18.设P为有公共焦点F1,F2的椭圆C1与双曲线C2的一个交点,且PF1⊥PF2,椭圆C1的离心率为e1,双曲线C2的离心率为e2,若3e1=e2,则e1=$\frac{\sqrt{5}}{3}$.

分析 根据椭圆的几何性质可得,${S}_{△P{F}_{1}{F}_{2}}$=b12tanθ,根据双曲线的几何性质可得,${S}_{△P{F}_{1}{F}_{2}}$=$\frac{{b}_{2}^{2}}{tanθ}$以及离心率以及a,b,c的关系即可求出答案.

解答 解:设∠F1PF2=2θ
根据椭圆的几何性质可得,${S}_{△P{F}_{1}{F}_{2}}$=b12tanθ=b12
∵e1=$\frac{c}{{a}_{1}}$,
∴a1=$\frac{c}{{e}_{1}}$,
∴b12=a12-c2=c2($\frac{1}{{e}_{1}^{2}}$-1)
根据双曲线的几何性质可得,${S}_{△P{F}_{1}{F}_{2}}$=$\frac{{b}_{2}^{2}}{tanθ}$=b22
∵e2=$\frac{c}{{a}_{2}}$
a2=$\frac{c}{{e}_{2}}$
∴b22=c2-a22=c2(1-$\frac{1}{{e}_{2}^{2}}$),
∴c2($\frac{1}{{e}_{1}^{2}}$-1)=c2(1-$\frac{1}{{e}_{2}^{2}}$),
即$\frac{1}{{e}_{1}^{2}}$+$\frac{1}{{e}_{2}^{2}}$=2,
∵3e1=e2
∴e1=$\frac{\sqrt{5}}{3}$
故答案为:$\frac{\sqrt{5}}{3}$

点评 本题考查了圆锥曲线的几何性质,以及椭圆和双曲线的简单性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若集合A={x|x2-x-2<0},且A∪B=A,则集合B可能是(  )
A.{0,1}B.{x|x<2}C.{x|-2<x<1}D.R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图1,等腰梯形BCDP中,BC∥PD,BA⊥PD于点A,PD=3BC,且AB=BC=1.沿AB把△PAB折起到△P'AB的位置(如图2),使∠P'AD=90°.

(Ⅰ)求证:CD⊥平面P'AC;
(Ⅱ)求三棱锥A-P'BC的体积;
(Ⅲ)线段P'A上是否存在点M,使得BM∥平面P'CD.若存在,指出点M的位置并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知圆(x-1)2+y2=4与抛物线y2=2px(p>0)的准线相切,则p=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设不等式$\left\{\begin{array}{l}x≥1\\ x-y≤0\\ x+y≤4\end{array}\right.$表示的平面区域为M,若直线y=kx-2上存在M内的点,则实数k的取值范围是[2,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.数列{an}的前n项和为Sn,$a1=2,{S_n}={a_n}({\frac{n}{3}+r})({r∈R,n∈{N^*}})$.
(1)求r的值及数列{an}的通项公式;
(2)设${b_n}=\frac{n}{a_n}({n∈{N^*}})$,记{bn}的前n项和为Tn
①当n∈N*时,λ<T2n-Tn恒成立,求实数λ的取值范围;
②求证:存在关于n的整式g(n),使得$\sum_{i=1}^{n-1}{({{T_n}+1})}={T_n}•g(n)-1$对一切n≥2,n∈N*都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知幂函数y=f(x)过点(2,8),则f(3)=(  )
A.27B.9C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设F1、F2分别为双曲线$\frac{x^2}{16}$-$\frac{y^2}{9}$=1的左右焦点,M是双曲线的右支上一点,则△MF1F2的内切圆圆心的横坐标为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$sinx(cosx-\sqrt{3}sinx)$.
(Ⅰ)求$f(\frac{π}{6})$的值;
(Ⅱ)求函数f(x)在区间[$0,\frac{π}{2}$]上的最值.

查看答案和解析>>

同步练习册答案