精英家教网 > 高中数学 > 题目详情
(2012•济宁一模)设向量
a
b
的平角为θ.规定
a
×
b
a
b
的“向量积”,且
a
×
b
满足下列条件①
a
×
b
是一个向量;②
a
×
b
的模为|
a
×
b
|=|
a
|•|
b
|•sinθ.若
a
=(-
3
,-1),
b
=(1,
3
)
,则|
a
×
b
|等于(  )
分析:由题目给出的
a
=(-
3
,-1),
b
=(1,
3
)
,求出两向量的夹角的余弦值,从而求出正弦值,同时求出两个向量的模,然后直接代入公式可求|
a
×
b
|.
解答:解:因为
a
=(-
3
,-1),
b
=(1,
3
)
,所以|
a
|=
(-
3
)2+(-1)2
=2
|
b
|=
12+(
3
)2
=2

由定义可知,cosθ=
a
b
|
a
|•|
b
|
=
-2
3
2×2
=-
3
2
,所以sinθ=
1
2

|
a
×
b
|
=|
a
|•|
b
|•sinθ=2×2×
1
2
=2

故选B.
点评:本题考查了平面向量的坐标运算,考查了由两向量的坐标求其夹角,是新定义下的运算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•济宁一模)观察下列式子:1+
1
2
2
 
3
2
,1+
1
2
2
 
+
1
3
2
 
5
3
,1+
1
2
2
 
+
1
3
2
 
+
1
4
2
 
7
4
,…,根据上述规律,第n个不等式应该为
1+
1
22
+
1
32
+…+
1
(n+1)2
2n+1
n+1
1+
1
22
+
1
32
+…+
1
(n+1)2
2n+1
n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济宁一模)给出下列命题:
①命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②命题“若am2<bm2,则a<b”的逆命题是真命题;
③f(x)是(-∞,0)∪(0,+∞)上的奇函数,x>0时的解析式是f(x)=2*.则x<0时的解析式为f(x)=-2-x
④若随机变量ξ~N(1,σ2),且P(0≤ξ≤1)=0.3,则P(ξ≥2)=0.2.
其中真命题的序号是
①③④
①③④
.(写出所有你认为正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济宁一模)若等边△ABC的边长为2
3
,平面内一点M满足
CM
=
1
3
CB
+
1
3
CA
,则
MA
MB
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济宁一模)设全集U={x∈N*|x<6},集合A={1,3},B={3,5},则?U(A∪B)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济宁一模)已知
2
x
+
8
y
=1,(x>0,y>0),则x+y的最小值为(  )

查看答案和解析>>

同步练习册答案